Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T08:54:26.375Z Has data issue: false hasContentIssue false

High-Angle Annular Dark Field Scanning Transmission Electron Microscopy on Carbon-Based Functional Polymer Systems

Published online by Cambridge University Press:  22 May 2009

Erwan Sourty
Affiliation:
Laboratory of Materials and Interface Chemistry and Soft-Matter CryoTEM Research Unit, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands FEI Company, Achtseweg Noord 5, Building AAE, 5600 KA Eindhoven/Acht, The Netherlands
Svetlana van Bavel
Affiliation:
Laboratory of Materials and Interface Chemistry and Soft-Matter CryoTEM Research Unit, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands Dutch Polymer Institute, Eindhoven University of Technology, PO Box 902, NL-5600 AX Eindhoven, The Netherlands
Kangbo Lu
Affiliation:
Laboratory of Materials and Interface Chemistry and Soft-Matter CryoTEM Research Unit, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands Dutch Polymer Institute, Eindhoven University of Technology, PO Box 902, NL-5600 AX Eindhoven, The Netherlands
Ralph Guerra
Affiliation:
The Dow Chemical Company, Freeport, TX 77541, USA
Georg Bar
Affiliation:
Dow Olefinverbund GmbH, PO 1163, 06258 Schkopau, Germany
Joachim Loos*
Affiliation:
Laboratory of Materials and Interface Chemistry and Soft-Matter CryoTEM Research Unit, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands Dutch Polymer Institute, Eindhoven University of Technology, PO Box 902, NL-5600 AX Eindhoven, The Netherlands Laboratory of Polymer Technology, Eindhoven University of Technology, PO Box 513, NL-5600 MB Eindhoven, The Netherlands
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clarke, D.R. (1970). Review: Image contrast in the scanning electron microscope. J Mater Sci 5, 689708.CrossRefGoogle Scholar
Colliex, C., Jeanguillaume, C. & Mory, C. (1984). Unconventional modes for STEM imaging of biological structures. J Ultrastr Res 88, 177206.CrossRefGoogle ScholarPubMed
Colliex, C. & Mory, C. (1994). Scanning transmission electron microscopy of biological structures. Biol Cell 80, 175180.CrossRefGoogle ScholarPubMed
Crewe, A.V. (1984). An introduction to the STEM. J Ultrastr Res 88, 94104.CrossRefGoogle ScholarPubMed
Crewe, A.V. & Wall, J. (1970). A scanning microscope with 5 Å resolution. J Mol Biol 48, 375393.CrossRefGoogle ScholarPubMed
Dai, K., Xu, X.-B. & Li, Z.-M. (2007). Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 48, 849859.CrossRefGoogle Scholar
Hoppe, H. & Sariciftci, N.S. (2006). Morphology of polymer/fullerene bulk heterojunction solar cells. J Mat Chem 16, 4561.CrossRefGoogle Scholar
Jeanguillaume, C., Colliex, C., Ballongue, P. & Tenee, M. (1992). New STEM multisignal imaging modes, made accessible through the evaluation of detection efficiencies. Ultramicroscopy 45, 205217.CrossRefGoogle ScholarPubMed
Nellist, P.D. & Pennycook, S.J. (1998). Accurate structure determination from image reconstruction in ADF STEM. J Microsc 190(1/2), 159170.CrossRefGoogle Scholar
Nellist, P.D. & Pennycook, S.J. (1999). Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111124.CrossRefGoogle Scholar
Sichel, E.K. (1982). Carbon Black-Polymer Composites. New York: Marcel Dekker.Google Scholar
Yang, X. & Loos, J. (2007). Toward high-performance polymer solar cells: The importance of morphology control. Macromol 40, 13531362.CrossRefGoogle Scholar
Yang, X., Loos, J., Veenstra, S.C., Verhees, W.J.H., Wienk, M.M., Kroon, J.M., Michels, M.A.J. & Janssen, R.A.J. (2005). Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5, 579583.CrossRefGoogle ScholarPubMed
Yang, X., Van Duren, J.K.J., Janssen, R.A.J., Michels, M.A.J. & Loos, J. (2004a). Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromol 37, 21512158.CrossRefGoogle Scholar
Yang, X., Van Duren, J.K.J., Rispens, M.T., Hummelen, J.C., Janssen, R.A.J., Michels, M.A.J. & Loos, J. (2004b). Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mat 16, 802806.CrossRefGoogle Scholar
Supplementary material: PDF

Sourty Supplementary Material

Figure.pdf

Download Sourty Supplementary Material(PDF)
PDF 39.8 KB