Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T23:53:41.440Z Has data issue: false hasContentIssue false

Heat-Induced Antigen Retrieval Applied in Zebrafish: Whole-Mount In Situ Immunofluorescence Microscopy

Published online by Cambridge University Press:  12 April 2012

Chuang-yu Lin
Affiliation:
Department of Chemical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
Wen-ta Su
Affiliation:
Department of Chemical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
Li-tzu Li*
Affiliation:
Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Whole-mount immunofluorescence technique provides a way to reveal integrated expression patterns of biological molecules in individuals. Well-documented morphological preservation ability in biology makes aldehydes the fixative of choice. Cross-linking among biocomponents and aldehydes is the key for maintaining morphology but masks the biological molecules for immunodetection. This study performs an easily accessible method by applying heat-induced retrieval, which can rescue the antigenicity of the proteins and also enhance the labeling sensitivity of the fluorescence dye in overfixed zebrafish embryos. The results show that the immunoreactivities of antibodies to myosin in the muscles, green fluorescent protein in the blood vessels and the nuclei in the cells can be recovered significantly, and the morphology of the zebrafish embryos, even the fragile mutants, is at the same time well maintained. Therefore, we provide a choice for antigen retrieval, which is effective for whole-mount immunofluorescence microscopy.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borman, W.H. & Yorde, D.E. (1994). Analysis of chick somite myogenesis by in-situ confocal microscopy of desmin expression. J Histochem Cytochem 42(2), 265272.CrossRefGoogle ScholarPubMed
Cox, M.L., Schray, C.L., Luster, C.N., Stewart, Z.S., Korytko, P.J., Khan, K.N.M., Paulauskis, J.D. & Dunstan, R.W. (2006). Assessment of fixatives, fixation, and tissue processing on morphology and RNA integrity. Exp Molec Pathol 80(2), 183191.CrossRefGoogle ScholarPubMed
Fassel, T., Mozdziak, P.E., Sanger, J.R. & Edmiston, C.E. (1998). Superior preservation of the staphylococcal glycocalyx with aldehyde ruthenium red and select lysine salts using extended fixation times. Microsc Res Techniq 41(4), 291297.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Hess, M.W., Klima, G., Pfaller, K., Kunzel, K.H. & Gaber, O. (1998). Histological investigations on the Tyrolean Ice Man. Am J Phys Anthropol 106(4), 521532.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Inoue, D. & Wittbrodt, J. (2011). One for all—A highly efficient and versatile method for fluorescent immunostaining in fish embryos. Plos One 6(5), e19713.CrossRefGoogle ScholarPubMed
Lambot, M.A.H., Mendive, F., Laurent, P., Van Schoore, G., Noel, J.C., Vanderhaeghen, P. & Vassart, G. (2009). Three-dimensional reconstruction of efferent ducts in wild-type and Lgr4 knock-out mice. Anat Rec (Hoboken) 292(4), 595603.CrossRefGoogle ScholarPubMed
Otali, D., Stockard, C.R., Oelschlager, D.K., Wan, W., Manne, U., Watts, S.A. & Grizzle, W.E. (2009). Combined effects of formalin fixation and tissue processing on immunorecognition. Biotechnic Histochem 84(5), 223247.CrossRefGoogle ScholarPubMed
Paavilainen, L., Edvinsson, A., Asplund, A., Hober, S., Kampf, C., Ponten, F. & Wester, K. (2010). The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells. J Histochem Cytochem 58(3), 237246.CrossRefGoogle ScholarPubMed
Pavlakis, E. & Chalepakis, G. (2008). pH-dependent antigen unmasking in paraformaldehyde-fixed tissue cryosections. Appl Immunohistochem Molec Morphol 16(5), 503506.CrossRefGoogle ScholarPubMed
Piaton, E., Faynel, J., Ruffion, A., Lopez, J., Perrin, P. & Devonec, M. (2005). p53 immunodetection of liquid-based processed urinary samples helps to identify bladder tumours with a higher risk of progression. Brit J Cancer 93(2), 242247.CrossRefGoogle ScholarPubMed
Shimada, A., Shibata, T., Komatsu, K. & Nifuji, A. (2008). Improved methods for immunohistochemical detection of BrdU in hard tissue. J Immunol Methods 339(1), 1116.CrossRefGoogle ScholarPubMed
Vassallo, J., Pinto, G.A., Alvarenga, M., Zeferino, L.C., Chagas, C.A. & Metze, K. (2004). Comparison of immunoexpression of 2 antibodies for estrogen receptors (1D5 and 6F11) in breast carcinomas using different antigen retrieval and detection methods. Appl Immunohistochem Molec Morphol 12(2), 177182.CrossRefGoogle ScholarPubMed
Wheeler, G.N. & Brandli, A.W. (2009). Simple vertebrate models for chemical genetics and drug discovery screens: Lessons from zebrafish and xenopus. Develop Dynam 238(6), 12871308.CrossRefGoogle ScholarPubMed