Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T03:11:56.713Z Has data issue: false hasContentIssue false

Gold Nanoparticle Uptake in Whole Cells in Liquid Examined by Environmental Scanning Electron Microscopy

Published online by Cambridge University Press:  21 January 2014

Diana B. Peckys*
Affiliation:
Innovative Electron Microscopy Group, INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
Niels de Jonge
Affiliation:
Innovative Electron Microscopy Group, INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

The size of gold nanoparticles (AuNPs) can influence various aspects of their cellular uptake. Light microscopy is not capable of resolving most AuNPs, while electron microscopy (EM) is not practically capable of acquiring the necessary statistical data from many cells and the results may suffer from various artifacts. Here, we demonstrate the use of a fast EM method for obtaining high-resolution data from a much larger population of cells than is usually feasible with conventional EM. A549 (human lung carcinoma) cells were subjected to uptake protocols with 10, 15, or 30 nm diameter AuNPs with adsorbed serum proteins. After 20 min, 24 h, or 45 h, the cells were fixed and imaged in whole in a thin layer of liquid water with environmental scanning electron microscopy equipped with a scanning transmission electron microscopy detector. The fast preparation and imaging of 145 whole cells in liquid allowed collection of nanoscale data within an exceptionally small amount of time of ~80 h. Analysis of 1,041 AuNP-filled vesicles showed that the long-term AuNP storing lysosomes increased their average size by 80 nm when AuNPs with 30 nm diameter were uptaken, compared to lysosomes of cells incubated with AuNPs of 10 and 15 nm diameter.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkilany, A.M. & Murphy, C.J. (2010). Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res 12(7), 23132333.Google Scholar
Aronova, M.A. & Leapman, R.D. (2013). Elemental mapping by electron energy loss spectroscopy in biology. Methods Mol Biol 950, 209226.Google Scholar
Barua, S. & Rege, K. (2009). Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small 5(3), 370376.Google Scholar
Baudoin, J.P., Jerome, W.G., Kubel, C. & de Jonge, N. (2013). Whole-cell analysis of low-density lipoprotein uptake by macrophages using STEM tomography. PLoS One 8(1), e55022. Google Scholar
Bhattacharyya, S., Bhattacharya, R., Curley, S., McNiven, M.A. & Mukherjee, P. (2010). Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci USA 107(33), 1454114546.Google Scholar
Bogner, A., Thollet, G., Basset, D., Jouneau, P.H. & Gauthier, C. (2005). Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.CrossRefGoogle Scholar
Braet, F., De Zanger, R. & Wisse, E. (1997). Drying cells for SEM, AFM and TEM by hexamethyldisilazane: A study on hepatic endothelial cells. J Microsc 186(Pt 1), 8487.Google Scholar
Brandenberger, C., Muhlfeld, C., Ali, Z., Lenz, A.G., Schmid, O., Parak, W.J., Gehr, P. & Rothen-Rutishauser, B. (2010). Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6(15), 16691678.Google Scholar
Bright, N.A., Reaves, B.J., Mullock, B.M. & Luzio, J.P. (1997). Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110(Pt 17), 20272040.Google Scholar
Chithrani, B.D. & Chan, W.C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6), 15421550.Google Scholar
Chithrani, B.D., Ghazani, A.A. & Chan, W.C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4), 662668.Google Scholar
Cho, E.C., Zhang, Q. & Xia, Y.N. (2011). The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6), 385391.Google Scholar
Cronholm, P., Karlsson, H.L., Hedberg, J., Lowe, T.A., Winnberg, L., Elihn, K., Wallinder, I.O. & Möller, L. (2013). Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small 9(7), 970982.Google Scholar
De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.N.J.A.M. & Geertsma, R.E. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12), 19121919.Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009a). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106, 21592164.Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009b). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106(7), 21592164.Google Scholar
Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J. & El-Sayed, M.A. (2012). The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev 41(7), 27402779.Google Scholar
Dukes, M.J., Ramachandra, R., Baudoin, J.P., Gray Jerome, W. & de Jonge, N. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174(3), 552562.Google Scholar
Foster, K.A., Oster, C.G., Mayer, M.M., Avery, M.L. & Audus, K.L. (1998). Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243(2), 359366.Google Scholar
Ghosh, P., Han, G., De, M., Kim, C.K. & Rotello, V.M. (2008). Gold nanoparticles in delivery applications. Adv Drug Delivery Rev 60(11), 13071315.Google Scholar
Glavinovic, M.I., Vitale, M.L. & Trifaro, J.M. (1998). Comparison of vesicular volume and quantal size in bovine chromaffin cells. Neuroscience 85(3), 957968.Google Scholar
Goldstein, J.L., Anderson, R.G. & Brown, M.S. (1979). Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715), 679685.CrossRefGoogle ScholarPubMed
Gruenberg, J., Griffiths, G. & Howell, K.E. (1989). Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro . J Cell Biol 108(4), 13011316.Google Scholar
Hopkins, C.R. & Trowbridge, I.S. (1983). Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Biol 97(2), 508521.Google Scholar
Hosta, L., Pla-Roca, M., Arbiol, J., Lopez-Iglesias, C., Samitier, J., Cruz, L.J., Kogan, M.J. & Albericio, F. (2008). Conjugation of kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjugate Chem 20(1), 138146.Google Scholar
Huang, X.H., Jain, P.K., El-Sayed, I.H. & El-Sayed, M.A. (2007). Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2(5), 681693.Google Scholar
Iversen, T.-G., Skotland, T. & Sandvig, K. (2011). Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 6(2), 176185.Google Scholar
Kirk, S., Skepper, J. & Donald, A.M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233(2), 205224.Google Scholar
Krpetić, Z.E., Porta, F., Caneva, E., Dal Santo, V. & Scari, G. (2010). Phagocytosis of biocompatible gold nanoparticles. Langmuir 26(18), 1479914805.CrossRefGoogle ScholarPubMed
Leapman, R.D. & Andrews, S.B. (1991). Analysis of directly frozen macromolecules and tissues in the field-emission STEM. J Microsc 161(Pt 1), 319.Google Scholar
Lévy, R., Shaheen, U., Cesbron, Y. & Sée, V. (2010). Gold nanoparticles delivery in mammalian live cells: A critical review. Nano Rev 1, 4889. Google Scholar
Ma, X.W., Wu, Y.Y., Jin, S.B., Tian, Y., Zhang, X.N., Zhao, Y.L., Yu, L. & Liang, X.J. (2011). Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5(11), 86298639.Google Scholar
Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C. & Baxter, S.C. (2008). Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 41(12), 17211730.Google Scholar
Murphy, G.E., Narayan, K., Lowekamp, B.C., Hartnell, L.M., Heymann, J.A., Fu, J. & Subramaniam, S. (2011). Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J Struct Biol 176(3), 268278.CrossRefGoogle ScholarPubMed
Muscariello, L., Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Cafiero, G. & Barbarisi, A. (2005). A critical overview of ESEM applications in the biological field. J Cell Physiol 205(3), 328334.Google Scholar
Nativo, P., Prior, I.A. & Brust, M. (2008). Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8), 16391644.Google Scholar
Nishiyama, H., Suga, M., Ogura, T., Maruyama, Y., Koizumi, M., Mio, K., Kitamura, S. & Sato, C. (2010). Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169(3), 438449.Google Scholar
Pan, Y., Neuss, S., Leifert, A., Fischler, M., Wen, F., Simon, U., Schmid, G., Brandau, W. & Jahnen-Dechent, W. (2007). Size-dependent cytotoxicity of gold nanoparticles. Small 3(11), 19411949.Google Scholar
Peckys, D.B. & de Jonge, N. (2011). Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11(4), 17331738.Google Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.Google Scholar
Ring, E.A., Peckys, D.B., Dukes, M.J., Baudoin, J.P. & de Jonge, N. (2011). Silicon nitride windows for electron microscopy of whole cells. J Microsc 243(3), 273283.Google Scholar
Rosman, C., Pierrat, S., Henkel, A., Tarantola, M., Schneider, D., Sunnick, E., Janshoff, A. & Sönnichsen, C. (2012). A new approach to assess gold nanoparticle uptake by mammalian cells: Combining optical dark-field and transmission electron microscopy. Small 8(23), 36833690.Google Scholar
Schrand, A.M., Schlager, J.J., Dai, L. & Hussain, S.M. (2010). Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc 5(4), 744757.Google Scholar
Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R. & Sastry, M. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21(23), 1064410654.Google Scholar
Siegwart, D.J., Srinivasan, A., Bencherif, S.A., Karunanidhi, A., Oh, J.K., Vaidya, S., Jin, R., Hollinger, J.O. & Matyjaszewski, K. (2009). Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromolecules 10(8), 23002309.Google Scholar
Soenen, S.J., Rivera-Gil, P., Montenegro, J.-M.A., Parak, W.J., De Smedt, S.C. & Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6(5), 446465.Google Scholar
Sousa, A.A., Azari, A.A., Zhang, G. & Leapman, R.D. (2011). Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging. J Struct Biol 174(1), 107114.Google Scholar
Stokes, D.J., Rea, S.M., Best, S.M. & Bonfield, W. (2003). Electron microscopy of mammalian cells in the absence of fixing, freezing, dehydration, or specimen coating. Scanning 25(4), 181184.Google Scholar
Stoorvogel, W. (2008). Analyzing endosomes in nonsectioned cells by transmission electron microscopy. In Exocytosis and Endocytosis, Ivanov, A. (Ed.), pp. 247257. New York: Humana Press.Google Scholar
Tantra, R. & Knight, A. (2010). Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques. Nanotoxicology 5(3), 381392.Google Scholar
Thakor, A.S., Jokerst, J., Zavaleta, C., Massoud, T.F. & Gambhir, S.S. (2011). Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett 11(10), 40294036.Google Scholar
Thiberge, S., Nechushtan, A., Sprinzak, D., Gileadi, O., Behar, V., Zik, O., Chowers, Y., Michaeli, S., Schlessinger, J. & Moses, E. (2004). Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci USA 101(10), 33463351.Google Scholar
van Deurs, B., Holm, P.K., Kayser, L. & Sandvig, K. (1995). Delivery to lysosomes in the human carcinoma cell line HEp-2 involves an actin filament-facilitated fusion between mature endosomes and preexisting lysosomes. Eur J Cell Biol 66(4), 309323.Google Scholar
Wang, Z.X. & Ma, L.N. (2009). Gold nanoparticle probes. Coord Chem Rev 253(11-12), 16071618.Google Scholar
Weintraub, K. (2013). Biomedicine: The new gold standard. Nature 495(7440), S14S16.Google Scholar