Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:04:14.307Z Has data issue: false hasContentIssue false

FIB Plan and Side View Cross-Sectional TEM Sample Preparation of Nanostructures

Published online by Cambridge University Press:  13 November 2013

Filip Lenrick*
Affiliation:
nCHREM/Center for Analysis and Synthesis, Lund University, Box 124, SE-221 00 Lund, Sweden
Martin Ek
Affiliation:
nCHREM/Center for Analysis and Synthesis, Lund University, Box 124, SE-221 00 Lund, Sweden
Daniel Jacobsson
Affiliation:
Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
Magnus T. Borgström
Affiliation:
Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
L. Reine Wallenberg
Affiliation:
nCHREM/Center for Analysis and Synthesis, Lund University, Box 124, SE-221 00 Lund, Sweden
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Focused ion beam is a powerful method for cross-sectional transmission electron microscope sample preparation due to being site specific and not limited to certain materials. It has, however, been difficult to apply to many nanostructured materials as they are prone to damage due to extending from the surface. Here we show methods for focused ion beam sample preparation for transmission electron microscopy analysis of such materials, demonstrated on GaAs–GaInP core shell nanowires. We use polymer resin as support and protection and are able to produce cross-sections both perpendicular to and parallel with the substrate surface with minimal damage. Consequently, nanowires grown perpendicular to the substrates could be imaged both in plan and side view, including the nanowire–substrate interface in the latter case. Using the methods presented here we could analyze the faceting and homogeneity of hundreds of adjacent nanowires in a single lamella.

Type
Techniques, Software, and Instrumentation Development
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassim, N.D., De Gregorio, B.T., Kilcoyne, A.L.D., Scott, K., Chou, T., Wirick, S., Cody, G. & Stroud, R.M. (2012). Minimizing damage during FIB sample preparation of soft materials. J Microsc 245, 288301.CrossRefGoogle Scholar
Bovin, J.O., Alfredsson, V., Karlsson, G., Carlsson, A., Blum, Z. & Terasaki, O. (1996). TEM-tomography of FAU-zeolite crystals containing Pt-clusters. Ultramicroscopy 62, 277281.Google Scholar
Cheng, Y. & Beresford, R. (2013). Epitaxial silicon dots self-assembled on aluminum nitride/Si (111). Nano Lett 13, 614617.CrossRefGoogle ScholarPubMed
Conesa-Boj, S., Russo-Averchi, E., Dalmau-Mallorqui, A., Trevino, J., Pecora, E.F., Forestiere, C., Handin, A., Ek, M., Zweifel, L., Wallenberg, L.R., Rüffer, D., Heiss, M., Troadec, D., Dal Negro, L., Caroff, P. & Fontcuberta i Morral, A. (2012). Vertical “III-V” V-shaped nanomembranes epitaxially grown on a patterned Si[001] substrate and their enhanced light scattering. ACS Nano 6, 1098210991.Google Scholar
Dieker, C., Heilmann, M., Vieweg, B.F., Butz, B., Christiansen, S. & Spiecker, E (2012). Extended shadow-FIB technique for orientation specific sectioning of anisotropic nanostructures applied to GaN/InGaN core shell nanopwires. In 15th European Microscopy Congress, Stokes, D.J., Rainforth, W.M., Hutchison, J.L., O'Toole, P.J. & Wilson, T. (Eds.), p. P092. Manchester, UK: Royal Microscopy Society.Google Scholar
Fauske, V.T., Munshi, A.M., Dheeraj, D.L., Kim, D.C., Fimland, B.O., Weman, H. & Van Helvoort, A.T.J. (2012). Site-specific, cross-sectional TEM samples of as-grown nanowires by FIB. In 15th European Microscopy Congress, Stokes, D.J., Rainforth, W.M., Hutchison, J.L., O'Toole, P.J. & Wilson, T. (Eds.), p. P673. Manchester, UK: Royal Microscopy Society.Google Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1997). Focused ion beam milling and micromanipulation lift-out for site specific cross-section TEM specimen preparation. In Specimen Preparation for Transmission Electron Microscopy of Materials, vol. 480, Anderson, R.M. & Walck, S.D. (Eds.), pp. 1927. Pittsburgh, PA: Materials Research Society.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197204.Google Scholar
Heiss, M., Fontana, Y., Gustafsson, A., Wüst, G., Magen, C., O'Regan, D.D., Luo, J.W., Ketterer, B., Conesa-Boj, S., Kuhlmann, A.V., Houel, J., Russo-Averchi, E., Morante, J.R., Cantoni, M., Marzari, N., Arbiol, J., Zunger, A., Warburton, R.J. & Fontcuberta i Morral, A. (2013). Self-assembled quantum dots in a nanowire system for quantum photonics. Nat Mater 12, 439444.CrossRefGoogle Scholar
Jiang, S. (2006). A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Mater Sci Eng A 418, 199210.Google Scholar
Kato, N.I. (2004). Reducing focused ion beam damage to transmission electron microscopy samples. J Electron Microsc 53, 451458.CrossRefGoogle ScholarPubMed
Kriegner, D., Persson, J.M., Etzelstorfer, T., Jacobsson, D., Wallentin, J., Wagner, J.B., Deppert, K., Borgström, M.T. & Stangl, J. (2013). Structural investigation of GaInP nanowires using X-ray diffraction. Thin Solid Films 543, 100105.CrossRefGoogle ScholarPubMed
Lauhon, L.J., Gudiksen, M.S., Wang, D. & Lieber, C.M. (2002). Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 5761.Google Scholar
Law, M., Goldberger, J. & Yang, P. (2004). Semiconductor nanowires and nanotubes. Annu Rev Mater Res 34, 83122.Google Scholar
Lechner, L., Biskupek, J. & Kaiser, U. (2012). Improved focused ion beam target preparation of (S)TEM specimen—A method for obtaining ultrathin lamellae. Microsc Microanal 18, 379384.Google Scholar
Li, W., Zhou, W., Li, H., Zhou, Z., Zhou, B., Sun, G. & Xin, Q. (2004). Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim Acta 49, 10451055.CrossRefGoogle Scholar
Munshi, A.M., Dheeraj, D.L., Fauske, V.T., Kim, D.C., Van Helvoort, A.T.J., Fimland, B.O. & Weman, H. (2012). Vertically aligned GaAs nanowires on graphite and few-layer graphene: Generic model and epitaxial growth. Nano Lett 12, 45704576.CrossRefGoogle ScholarPubMed
Ohnishi, T., Koike, H., Ishitani, T., Tomimatsu, S., Umemura, K. & Kamino, T. (1999). A new focused-ion-beam microsampling technique for TEM observation of site-specific area's. In Conference Proceedings from the International Symposium for Testing and Failure Analysis, pp. 449453. Santa Clara, CA: ASM International.Google Scholar
Overwijk, M.H.F., Van den Heuvel, F.C. & Bulle-Lieuwma, C.W.T. (1993). Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam. J Vac Sci Technol B 11, 20212024.Google Scholar
Rivera, F., Davis, R. & Vanfleet, R. (2013). Alternative FIB TEM sample preparation method for cross-sections of thin metal films deposited on polymer substrates. Microsc Microanal 19, 10801091.CrossRefGoogle ScholarPubMed
Schaffer, M., Schaffer, B. & Ramasse, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.CrossRefGoogle ScholarPubMed
Schreiber, D.K., Adusumilli, P., Hemesath, E.R., Seidman, D.N., Petford-Long, A.K. & Lauhon, L.J. (2012). A method for directly correlating site-specific cross-sectional and plan-view transmission electron microscopy of individual nanostructures. Microsc Microanal 18, 14101418.Google Scholar
Sköld, N., Wagner, J.B., Karlsson, G., Hernán, T., Seifert, W., Pistol, M.E. & Samuelson, L. (2006). Phase segregation in AlInP shells on GaAs nanowires. Nano Lett 6, 27432747.CrossRefGoogle ScholarPubMed
Thomas, J. & Gemming, T. (2005). Shells on nanowires detected by analytical TEM. Appl Surf Sci 252, 245251.CrossRefGoogle Scholar
Verheijen, M.A., Algra, R.E., Borgström, M.T., Immink, G., Sourty, E., Enckevort, W.J.P., Van Vlieg, E. & Bakkers, E.P.A.M. (2007). Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett 7, 30513055.CrossRefGoogle ScholarPubMed
Vieweg, B.F., Butz, B., Peukert, W., Klupp Taylor, R.N. & Spiecker, E. (2012). TEM preparation method for site- and orientation-specific sectioning of individual anisotropic nanoparticles based on shadow-FIB geometry. Ultramicroscopy 113, 165170.Google Scholar
Xu, T., Dick, K.A., Plissard, S., Nguyen, T.H., Makoudi, Y., Berthe, M., Nys, J.P., Wallart, X., Grandidier, B. & Caroff, P. (2012). Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques. Nanotechnology 23, 095702. CrossRefGoogle ScholarPubMed
Zheng, C., Wong-Leung, J., Gao, Q.M., Tan, H.H., Jagadish, C. & Etheridge, J. (2013). Polarity driven 3-fold symmetry of GaAs/AlGaAs core multishell nanowires. Nano Lett 13, 37423748.Google Scholar
Supplementary material: PDF

Lenrick et al. Supplementary Material

Supplementary Material

Download Lenrick et al. Supplementary Material(PDF)
PDF 59.9 KB