Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T13:26:14.411Z Has data issue: false hasContentIssue false

Evaluation of Agave Fiber Delignification by Means of Microscopy Techniques and Image Analysis

Published online by Cambridge University Press:  26 August 2014

Hilda M. Hernández-Hernández
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, Col. Santo Tomas, C. P. 11340, México D.F., Mexico
Jorge J. Chanona-Pérez*
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, Col. Santo Tomas, C. P. 11340, México D.F., Mexico
Georgina Calderón-Domínguez
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, Col. Santo Tomas, C. P. 11340, México D.F., Mexico
María. J. Perea-Flores
Affiliation:
Centro de Nanociencias y Micro-Nanotecnología, Instituto Politécnico Nacional, Luis Enrique Erro s/n, Unidad Profesional Adolfo López Mateos, Col. Zacatenco, C. P. 07738, México D.F., Mexico
Jorge A. Mendoza-Pérez
Affiliation:
Departamento Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu s/n U, Profesor Adolfo López Mateos, Gustavo A. Madero, 07738 México D.F., Mexico
Alberto Vega
Affiliation:
Departamento Química Física e Enxeñería Química I, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, 15071A Coruña España, Spain
Pablo Ligero
Affiliation:
Departamento Química Física e Enxeñería Química I, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, 15071A Coruña España, Spain
Eduardo Palacios-González
Affiliation:
Laboratorio de Microscopía Electrónica de Ultra Alta Resolución, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas N.152, Edif. 33, Colonia San Bartolo Atepehuacan, C. P. 07730, México D.F., Mexico
Reynold R. Farrera-Rebollo
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, Col. Santo Tomas, C. P. 11340, México D.F., Mexico
*
*Corresponding author.[email protected]
Get access

Abstract

Recently, the use of different types of natural fibers to produce paper and textiles from agave plants has been proposed. Agave atrovirens can be a good source of cellulose and lignin; nevertheless, the microstructural changes that happen during delignification have scarcely been studied. The aim of this work was to study the microstructural changes that occur during the delignification of agave fibers by means of microscopy techniques and image analysis. The fibers of A. atrovirens were obtained from leaves using convective drying, milling, and sieving. Fibers were processed using the Acetosolv pulping method at different concentrations of acetic acid; increasing acid concentration promoted higher levels of delignification, structural damage, and the breakdown of fiber clumps. Delignification followed by spectrometric analysis and microstructural studies were carried out by light, confocal laser scanning and scanning electron microscopy and showed that the delignification process follows three stages: initial, bulk, and residual. Microscopy techniques and image analysis were efficient tools for microstructural characterization during delignification of agave fibers, allowing quantitative evaluation of the process and the development of linear prediction models. The data obtained integrated numerical and microstructural information that could be valuable for the study of pulping of lignocellulosic materials.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, S., Santos, V. & Parajó, J.C. (2003). Two-stage acetosolv pulping of Eucalyptus wood. Cellul Chem Technol 35, 333343.Google Scholar
Arzate-Vázquez, I., Chanona-Pérez, J.J., Calderón-Domínguez, G., Terres-Rojas, E., Garibay-Febles, V., Martínez-Rivas, A. & Gutiérrez-López, G.F. (2012). Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydr Polym 87, 289299.CrossRefGoogle ScholarPubMed
Bessadok, A., Langevin, D., Gouanvé, F., Chappey, C., Roudesli, S. & Marais, S. (2009). Study of water sorption on modified agave fibers. Carbohydr Polym 76, 7485.CrossRefGoogle Scholar
Coletta, V.C., Rezende, C.A., Rodrigues da Conceição, F., Polikarpov, I. & Gontijo Guimarães, F.E. (2013). Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. Biotechnol Biofuels 6, 110.CrossRefGoogle ScholarPubMed
Dickinson, M.E., Bearman, G., Tille, S., Lansford, R. & Fraser, S.E. (2001). Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31, 12721278.CrossRefGoogle ScholarPubMed
Donaldson, L., Radotić, K., Kalauzi, A., Djikanović, D. & Jeremić, M. (2010). Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. J Struct Biol 169, 106115.CrossRefGoogle ScholarPubMed
Farrera-Rebollo, R.R., Salgado-Cruz, M.P., Chanona-Pérez, J.J., Gutiérrez-López, G.F., Alamilla-Beltrán, L. & Calderón-Domínguez, G. (2012). Evaluation of image analysis tools for characterization of sweet bread crumb structure. Food Bioprocess Technol 5, 474484.CrossRefGoogle Scholar
Fernández, L., Castillero, C. & Aguilera, J.M. (2005). An application of image analysis to dehydration of apple discs. J Food Eng 67, 185193.CrossRefGoogle Scholar
Gilarranz, M.A., Santos, A., García, J., Oliet, M. & Rodríguez, F. (2002). Kraft pulping of Eucalyptus globulus: Kinetics of residual delignification. Ind Eng Chem Res 41, 19551959.CrossRefGoogle Scholar
Good-Avila, S.V., Souza, V., Gaut, B.S. & Eguiarte, L.E. (2006). Timing and rate of speciation in agave (Agavaceae). Proc Natl Acad Sci USA 103, 91249129.CrossRefGoogle ScholarPubMed
Gosselin, R., Duchesne, C. & Rodrigue, D. (2008). On the characterization of polymer powders mixing dynamics by texture analysis. Powder Technol 183, 177188.CrossRefGoogle Scholar
Gottlieb, K. & Meckel, J. (1992). Acetocell pulping of spruce and chlorine-free bleaching. In Solvent Pulping Symposium, Young, J. (Ed.), pp. 3539. Atlanta: TAPPI Press.Google Scholar
Gumeta-Chávez, C., Chanona-Pérez, J.J., Mendoza-Pérez, J.A., Terrés-Rojas, E., Garibay-Febles, V. & Gutiérrez-López, G.F. (2011). Shrinkage and deformation of Agave atrovirens Karw tissue during convective drying: Influence of structural arrangements. Drying Technol 29, 612623.CrossRefGoogle Scholar
Haralick, R.M., Shanmugam, K. & Dinstein, I. (1973). Textural features for image classification. IEEE Trans Syst Man Cybern 3, 610621.CrossRefGoogle Scholar
Higuchi, T. (1985). Biosynthesis of lignin. In Biosynthesis and Biodegradation of Wood Components, Higuchi, T. (Ed.), pp. 141160. Orlando: Academic Press.CrossRefGoogle Scholar
Idarraga, G., Ramos, J., Zuniga, V., Sahin, T. & Young, R.A. (1999). Pulp and paper from blue agave waste from tequila production. J Agric Food Chem 47, 44504455.CrossRefGoogle ScholarPubMed
Jiang, G., Nowakowski, D. & Bridgwater, A. (2010). A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498, 6166.CrossRefGoogle Scholar
Kestur, G.S., Flores-Sahagun, T.H.S., Dos Santos, L.P., Dos Santos, J., Mazzaro, I. & Mikowski, A. (2013). Characterization of blue agave bagasse fibers of Mexico. Compos Part A 45, 153161.CrossRefGoogle Scholar
Kirkbride, K.P. & Tridico, S.R. (2010). The application of laser scanning confocal microscopy to the examination of hairs and textile fibers: An initial investigation. Forensic Sci Int 195, 2835.CrossRefGoogle Scholar
Kutscha, N.P. & McOrmond, R.R. (1972). The suitability of using fluorescence microscopy for studying lignification in balsam fir. Technical Bulletin 62, 314.Google Scholar
Lee, K.H., Wi, S.G., Singh, A.P. & Kim, Y.S. (2004). Micromorphological characteristics of decayed wood and laccase produced by the brown-rot fungus Coniophora puteana. J Wood Sci 50, 281284.CrossRefGoogle Scholar
Li, Z., Li, J. & Kubes, G.J. (2002). Kinetics of delignification and cellulose degradation during kraft pulping with polysulphide and anthraquinone. J Pulp Pap Sci 28, 234239.Google Scholar
Ligero, P., Vega, A. & Bao, M. (2005). Acetosolv delignification of Miscanthus sinensis bark: Influence of process variables. Ind Crops Prod 21, 235240.Google Scholar
Ligero, P., Villaverde, J.J., Vega, A. & Bao, M. (2007). Acetosolv delignification of depithed cardoon (Cynara cardunculus) stalks. Ind Crops Prod 25, 294300.CrossRefGoogle Scholar
Ma, J.F., Yang, G.H., Mao, J.Z. & Xu, F. (2011). Characterization of anatomy, ultrastructure and lignin microdistribution in Forsythia suspense. Ind Crops Prod 33, 358363.CrossRefGoogle Scholar
Mendoza, F., Dejmek, P. & Aguilera, J.M. (2007). Colour and image texture analysis in classification of commercial potato chips. Food Res Int 40, 11461154.CrossRefGoogle Scholar
Ming-Fei, L., Shao-Ni, S., Feng, X. & Run-Cang, S. (2012). Mild acetosolv process to fractionate bamboo for the biorefinery: Structural and antioxidant properties of the dissolved lignin. J Agric Food Chem 60, 17031712.Google Scholar
Narvaéz-Zapata, J.A. & Sánchez-Teyer, L.F. (2009). Agaves as a raw material: Recent technologies and applications. Recent Pat Biotechnol 3, 185191.Google ScholarPubMed
Pan, X. & Sano, Y. (2005). Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96(11), 12561263.CrossRefGoogle ScholarPubMed
Perea-Flores, M.J., Chanona-Pérez, J.J., Garibay-Febles, V., Calderón-Dominguez, G., Terrés-Rojas, E., Mendoza-Pérez, J.A. & Herrera-Bucio, R. (2011). Microscopy techniques and image analysis for evaluation of some chemical and physical properties and morphological features for seeds of the castor oil plant (Ricinus communis). Ind Crops Prod 34, 10571065.CrossRefGoogle Scholar
Perea-Flores, M.J., Garibay-Febles, V., Chanona-Pérez, J.J., Calderón-Domínguez, G., Méndez-Méndez, J.V., Palacios-González, E. & Gutiérrez-López, G.F. (2012). Mathematical modelling of castor oil sedes (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind Crops Prod 38, 6471.CrossRefGoogle Scholar
Quevedo, R., Mendoza, F., Aguilera, J.M., Chanona, J. & Gutiérrez-López, G. (2008). Determination of senescent spotting in banana (Musa cavendish) using fractal texture Fourier image. J Food Eng 84, 509515.CrossRefGoogle Scholar
Sakagami, H., Matsumura, J. & Kazuyuki, O. (2009). In situ visualization of hardwood microcracks occurring during drying. J Wood Sci 55, 323328.CrossRefGoogle Scholar
Santos, A., Rodríguez, F., Gilarranz, M.A., Moreno, D. & Garcia-Ochoa, F. (1997). Kinetic modeling of kraft delignification of Eucalyptus globulus. Ind Eng Chem Res 36(10), 41144125.CrossRefGoogle Scholar
Santos, R.B., Jameel, H., Chang, H. & Hart, P.W. (2012). Kinetics of hardwood carbohydrate degradation during kraft pulp cooking. Ind Eng Chem Res 51, 1219212198.Google Scholar
Shatalov, A.A. & Pereira, H. (2005). Kinetics of organosolv delignification of fiber crop Arundo donax L. Ind Crops Prod 21, 203210.CrossRefGoogle Scholar
Soudham, P.R., Rodríguez, D., Rocha, G.J.M., Taherzadeh, M.J. & Martín, C. (2011). Acetosolv delignification of marabou (Dichrostachys cinerea) wood with and without acid prehydrolysis. For Stud China 13(1), 6470.CrossRefGoogle Scholar
Spigno, G., Pizzorno, T. & De Faveri, D.M. (2008). Cellulose and hemicelluloses recovery from grape stalks. Bioresour Technol 99, 43294337.CrossRefGoogle ScholarPubMed
Tang, E.O. & Chow, D.C. (2006). Articles of manufacture made from agave residue, and methods for making such articles. US Patent 20060222719.Google Scholar
Thygesen, L.G. & Hoffmeyer, P. (2005). Image analysis for the quantification of dislocations in hemp fibers. Ind Crops Prod 21, 173184.CrossRefGoogle Scholar
Vázquez, G., Antorrena, G. & González, J. (1995). Kinetics of acid-catalysed delignification of Eucalyptus globulus wood by acetic acid. Wood Sci Technol 29, 267275.CrossRefGoogle Scholar
Vázquez, G., Antorrena, G., González, J., Freire, S. & López, S. (1997). Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation. Bioresour Technol 59, 121127.CrossRefGoogle Scholar
Wen, J., Sun, S., Yuan, T., Xu, F. & Sun, R. (2013). Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: Understanding the fundamental chemistry of the lignin during the integrated process. Bioresour Technol 150, 278286.CrossRefGoogle ScholarPubMed
Xu, F., Zhong, X.C., Sun, R.C. & Lu, Q. (2006). Anatomy, ultrastructure and lignin distribution in cell wall of Caragana korshinskii. Ind Crops Prod 24, 186193.CrossRefGoogle Scholar
Yang, L. & Liu, S. (2005). Kinetic model for kraft pulping process. Ind Eng Chem Res 44, 70787085.CrossRefGoogle Scholar
Zuluaga, R., Putaux, J., Restrepo, A., Mondragon, I. & Gañán, P. (2007). Cellulose microfibrils from banana farming residues: Isolation and characterization. Cellulose 14, 585592.CrossRefGoogle Scholar