Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T15:04:42.306Z Has data issue: false hasContentIssue false

Electron Tomography of Frozen-Hydrated Samples

Published online by Cambridge University Press:  02 July 2020

M. Marko
Affiliation:
Biological Microscopy and Image Reconstruction Resource, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509
C.-E. Hsieh
Affiliation:
Biological Microscopy and Image Reconstruction Resource, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509
B.K. Rath
Affiliation:
Biological Microscopy and Image Reconstruction Resource, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509
C.A. Mannella
Affiliation:
Biological Microscopy and Image Reconstruction Resource, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509
B.F. McEwen
Affiliation:
Biological Microscopy and Image Reconstruction Resource, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509
Get access

Extract

Cryo-electron tomography offers a means of obtaining the 3-D ultrastructure of specimens that have not been chemically fixed or stained. The technique is still under development, but it has already been applied to several biological specimens including prokaryotic cells, centrioles, sperm axonemes, mitochondria, spindle-pole bodies, lipid vesicles, isolated skeletal-muscle triad junctions, chromatin fragments, actin bundles, and macromolecules.

Electron tomography itself is a nearly mature technology. It is most often used with conventional plastic sections 100- 1000nm thick. The specimen is imaged in the TEM, using a tilt stage to record a series of projection images over a large angular range. Using image-processing techniques, the tilt images are back-projected to form a reconstructed volume of the specimen. The reconstruction is a 3-D array of pixels or volume elements (voxels), and can be sliced in any direction to form a series of 2-D images.

Type
Technologists Forum: Cryo Microscopy
Copyright
Copyright © Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Koster, A.J., et al. J. Struct. Biol. 120(1997)276.CrossRefGoogle Scholar
2.Grimm, R., et al. Biophys J. 74(1998)1031.CrossRefGoogle Scholar
3.Typke, D., et al. Proc. ICEM 4(1998)463.Google Scholar
4.Kenney, J., et al. J. Struct. Biol. 120(1997)320.CrossRefGoogle Scholar
5.McEwen, B.F., et al. Proc. ICEM 4(1998)459.Google Scholar
6.McEwen, B.F., et al. Proc. MSA (1999)410.CrossRefGoogle Scholar
7.Mannella, C.A., et al. Proc. MSA (1999)416.CrossRefGoogle Scholar
8.Nicastro, D., et al. Proc. MSA (1999)452.Google Scholar
9.Bullit, E., et al. Cell 89(1997)1077.CrossRefGoogle Scholar
10.Bullit, E. Proc. MSA (1998)434.Google Scholar
11.Dierksen, K., et al. Biophys. J. 68(1995)1416.CrossRefGoogle Scholar
12.Grimm, R., et al. Biophys. J. 72(1997)482.CrossRefGoogle Scholar
13.Wagenknecht, T., in preparation.Google Scholar
14.Horowitz, R.A., et al. J. Struct. Biol. 120(1997)353CrossRefGoogle Scholar
15.Sherman, M.B., et al. J. Struct. Biol. 120(1997)245CrossRefGoogle Scholar
16.Walz, J., et al. J. Struct. Biol. 120(1997)387.CrossRefGoogle Scholar
17.Walz, J., et al. Mol. Cell 1(1997)59.CrossRefGoogle Scholar
18.Nitsch, M., et al. Nature Struct. Biol. 5(1998)855.CrossRefGoogle Scholar
19.Frank, J., Electron Tomography, Plenum, 1992.CrossRefGoogle Scholar
20.Frank, J., Curr. Opin. Struct. Biol. 5(1995)194.CrossRefGoogle Scholar
21.Baumeister, W., et al. Tr. Cell Biol. 9(1999)81.CrossRefGoogle Scholar
22.McEwen, B. F. & Heagle, A. B.Int. J. Imaging Syst Tech. 8(1997)1753.0.CO;2-7>CrossRefGoogle Scholar
23.McEwen, B. & Marko, M.Meth. Cell Biol. 61(1998)81.CrossRefGoogle Scholar
24.Dubochet, J., et al. Quart, Rev. Biophys. 21(1988)129.CrossRefGoogle Scholar
25.Michel, M., et al. J. Microsc. 163(1991)3.CrossRefGoogle Scholar
26.Studer, D. and Gnagi, H. Proc. MSA (1999)418.CrossRefGoogle Scholar
27.Gnagi, H., these proceedings.Google Scholar
28.Marko, M., et al. Proc. MSA (1999)410.Google Scholar
29.Dierksen, K., et al. Ultramicroscopy 40(1992)71.CrossRefGoogle Scholar
30.Dierksen, K., et al. Ultramicroscopy 49(1993)109.CrossRefGoogle Scholar
31.Koster, A.J., et al. Ultramicroscopy 46(1992)207.CrossRefGoogle Scholar
32.Fung, J.C., et al. J. Struct. Biol. 116(1996)181.CrossRefGoogle Scholar
33.Rath, B.K., et al. J. Struct. Biol. 120(1997)210.CrossRefGoogle Scholar
34.Crowther, R.Ph. Trans. R. Soc. Lond. B 261(1971)221.Google Scholar
35.Saxberg, B. & Saxton, W.Ultramicroscopy 6(1981)85.CrossRefGoogle Scholar
36.McEwen, B.F., et al. Ultramicroscopy 60(1995)357.CrossRefGoogle Scholar
37.Grimm, R., et al. J. Microsc. 190(1998)339.CrossRefGoogle Scholar
38.McEwen, B.F., et al., in preparation.Google Scholar
39. This research was supported by NIH grant RR01219, supporting the BMIRR.Google Scholar