Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T05:14:01.159Z Has data issue: false hasContentIssue false

Effect of Betaine Supplementation on Liver Tissue and Ultrastructural Changes in Methionine–Choline-Deficient Diet-Induced NAFLD

Published online by Cambridge University Press:  12 August 2020

Milena Vesković
Affiliation:
Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
Milica Labudović-Borović
Affiliation:
Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade11000, Serbia
Dušan Mladenović
Affiliation:
Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
Jelena Jadžić
Affiliation:
Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade11000, Serbia
Bojan Jorgačević
Affiliation:
Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
Dušan Vukićević
Affiliation:
Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
Danijela Vučević
Affiliation:
Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
Tatjana Radosavljević*
Affiliation:
Institute of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr Subotica 9, Belgrade11000, Serbia
*
*Author for correspondence: Tatjana Radosavljevic, E-mail: [email protected]
Get access

Abstract

Nonalcoholic fatty liver disease (NAFLD) represents a hepatic manifestation of metabolic syndrome. The aim of this study was to examine the effect of betaine on ultrastructural changes in the mouse liver with methionine- and choline-deficient (MCD) diet-induced NAFLD. Male C57BL/6 mice were divided into groups: Control—fed with standard chow, BET—standard chow supplemented with betaine (1.5% w/v drinking water), MCD—fed with MCD diet, and MCD + BET—MCD diet with betaine supplementation for 6 weeks. Liver samples were taken for pathohistology and transmission electron microscopy. The MCD diet-induced steatosis, inflammation, and balloon-altered hepatocytes were alleviated by betaine. MCD diet induced an increase in mitochondrial size versus the control group (p < 0.01), which was decreased in the betaine-treated group. In the MCD diet-fed group, the total mitochondrial count decreased versus the control group (p < 0.01), while it increased in the MCD + BET group versus MCD (p < 0.01). Electron microscopy showed an increase in the number of autophagosomes in the MCD and MCD + BET group versus control, and a significant difference in autophagosomes number was detected in the MCD + BET group by comparison with the MCD diet-treated group (p < 0.05). Betaine decreases the number of enlarged mitochondria, alleviates steatosis, and increases the number of autophagosomes in the liver of mice with NAFLD.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu Ahmad, N, Raizman, M, Weizmann, N, Wasek, B, Arning, E, Bottiglieri, T, Tirosh, O & Troen, AM (2019). Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline-deficient rats. FASEB J 33, 93349349.CrossRefGoogle ScholarPubMed
Adjoumani, J-JY, Wang, K, Zhou, M, Liu, W & Zhang, D (2017). Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet. Fish Physiol Biochem 43, 17331745.CrossRefGoogle ScholarPubMed
Adolph, TE, Grander, C, Grabherr, F & Tilg, H (2017). Adipokines and non-alcoholic fatty liver disease: Multiple interactions. Int J Mol Sci 18, E1649. doi:10.3390/ijms18081649.CrossRefGoogle ScholarPubMed
Alba, LM & Lindor, K (2003). Review article: Non-alcoholic fatty liver disease. Aliment Pharmacol Ther 17, 977986.CrossRefGoogle ScholarPubMed
Alirezaei, M, Jelodar, G, Niknam, P, Ghayemi, Z & Nazifi, S (2011). Betaine prevents ethanol-induced oxidative stress and reduces total homocysteine in the rat cerebellum. J Physiol Biochem 67, 605612.CrossRefGoogle ScholarPubMed
Aly, F & Kleiner, D (2011). Update on fatty liver disease and steatohepatitis. Adv Anat Pathol 18, 294300.CrossRefGoogle ScholarPubMed
Asrih, M & Jornayvaz, FR (2013). Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol 218, R25R36.CrossRefGoogle ScholarPubMed
Backues, SK, Chen, D, Ruan, J, Xie, Z & Klionsky, D (2013). Estimating the size and number of autophagic bodies by electron microscopy. Autophagy 10, 155164.CrossRefGoogle ScholarPubMed
Balkan, J, Öztezcan, S, Küçük, M, Çevikbaş, U, Koçak-Toker, N & Uysal, M (2004). The effect of betaine treatment on triglyceride levels and oxidative stress in the liver of ethanol-treated guinea pigs. Exp Toxicol Pathol 55, 505509.CrossRefGoogle ScholarPubMed
Benedict, M & Zhang, X (2017). Non-alcoholic fatty liver disease: An expanded review. World J Hepatol 9, 715732.CrossRefGoogle Scholar
Bettermann, K, Hohensee, T & Haybaeck, J (2014). Steatosis and steatohepatitis: Complex disorders. Int J Mol Sci 15, 99249944.CrossRefGoogle ScholarPubMed
Bradbury, MW (2006). Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: Possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 290, G194G198.CrossRefGoogle ScholarPubMed
Chu, Q, Zhang, S, Chen, M, Han, W, Jia, R, Chen, W & Zheng, X (2019). Cherry anthocyanins regulate NAFLD by promoting autophagy pathway. Oxid Med Cell Longev 2019, 4825949. doi:10.1155/2019/4825949.CrossRefGoogle ScholarPubMed
Cusi, K (2012). Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications. Gastroenterology 142, 711725.CrossRefGoogle ScholarPubMed
Das, S, Hajnóczky, N, Noronha Antony, A, Csordás, G, Gaspers, LD, Clemens, DL, Hoek, JB & Hajnóczky, G (2012). Mitochondrial morphology and dynamics in hepatocytes from normal and ethanol-fed rats. Pflug Arch 464, 101109.CrossRefGoogle ScholarPubMed
Day, CR & Kempson, SA (2016). Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta 1860, 10981106.CrossRefGoogle ScholarPubMed
Eckel, R, Grundy, S & Zimmet, P (2005). The metabolic syndrome. Lancet 52, 779785.Google Scholar
Gill, RM & Kakar, S (2013). Nonalcoholic steatohepatitis: Diagnostic challenges. Surg Pathol Clin 6, 227257.CrossRefGoogle ScholarPubMed
Hashimoto, E, Taniai, M & Tokushige, K (2013). Characteristics and diagnosis of NAFLD/NASH. J Gastroenterol Hepatol 28, 6470.CrossRefGoogle ScholarPubMed
Jorgačevic, B, Mladenovic, D, Ninkovic, M, Prokic, V, Stankovic, M, Aleksic, V, Cerovic, I, Vukievic, RJ, Vučevic, D, Stankovic, M & Radosavljevic, T (2014). Dynamics of oxidative/nitrosative stress in mice with methionine– choline-deficient diet-induced nonalcoholic fatty liver disease. Hum Exp Toxicol 33, 701709.CrossRefGoogle ScholarPubMed
Kawano, Y & Cohen, DE (2013). Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 48, 434441.CrossRefGoogle ScholarPubMed
Kleiner, DE, Brunt, EM, Van Natta, M, Behling, C, Contos, MJ, Cummings, OW, Ferrell, LD, Liu, YC, Torbenson, MS, Unalp-Arida, A, Yeh, M, McCullough, AJ & Sanyal, AJ (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 13131321.CrossRefGoogle ScholarPubMed
Kleiner, DE & Makhlouf, HR (2016). Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children. Clin Liver Dis 20, 293312.CrossRefGoogle ScholarPubMed
Kwon, DY, Jung, YS, Kim, SJ, Park, HK, Park, JH & Kim, YC (2009). Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. J Nutr 139, 6368.CrossRefGoogle ScholarPubMed
Lau, JKC, Zhang, X & Yu, J (2017). Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. J Pathol 241, 3644.CrossRefGoogle ScholarPubMed
Le, TH, Caldwell, SH, Redick, JA, Sheppard, BL, Davis, CA, Arseneau, KO, Iezzoni, JC, Hespenheide, EE, Al-Osaimi, A & Peterson, TC (2004). The zonal distribution of megamitochondria with crystalline inclusions in nonalcoholic steatohepatitis. Hepatology 39, 14231429.CrossRefGoogle ScholarPubMed
Lee, SY & Ko, KS (2016). Effects of S-adenosylmethionine and its combinations with taurine and/or betaine on glutathione homeostasis in ethanol-induced acute hepatotoxicity. J Cancer Prev 21, 164172.CrossRefGoogle ScholarPubMed
Liu, C, Liao, JZ & Li, PY (2017). Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease. World J Gastroenterol 23, 19641973.CrossRefGoogle ScholarPubMed
Lonardo, A, Nascimbeni, F, Ballestri, S, Fairweather, DL, Win, S, Than, TA, AbdelmaleK, MF & Suzuki, A (2019). Sex differences in nonalcoholic fatty liver disease: State of the art and identification of research gaps. Hepatology 70, 14571469.CrossRefGoogle ScholarPubMed
MacHado, MV & Diehl, AM (2016). Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 150, 17691777.CrossRefGoogle ScholarPubMed
Mao, Y, Yu, F, Wang, J, Guo, C & Fan, X (2016). Autophagy: a new target for nonalcoholic fatty liver disease therapy. Hepat Med 8, 2737.CrossRefGoogle ScholarPubMed
Marcolin, É., Forgiarini, L. F., Tieppo, J., Dias, A. S., Antonio, L., De Freitas, R. & Marroni, N. P. (2011). Methionine- and choline-deficient diet induces hepatic changes characteristic of non-alcoholic steatohepatitis. Arq Gastroenterol 48, 7279.CrossRefGoogle ScholarPubMed
Moon, WS, Kim, JH, Kang, MJ & Lee, DG (2000). Early ultrastructural changes of apoptosis induced by fumonisin B1 in rat liver. Yonsei Med J 41, 195204.CrossRefGoogle ScholarPubMed
Neuman, MG, French, SW, French, BA, Seitz, HK, Cohen, LB, Mueller, S, Osna, NA, Kharbanda, KK, Seth, D, Bautista, A, Thompson, KJ, McKillop, IH, Kirpich, IA, McClain, CJ, Bataller, R, Nanau, RM, Voiculescu, M, Opris, M, Shen, H, Tillman, B, Li, J, Liu, H, Thomes, PG, Ganesan, M & Malnick, S (2014). Alcoholic and non-alcoholic steatohepatitis. Exp Mol Pathol 97, 492510.CrossRefGoogle ScholarPubMed
Pappachan, JM, Babu, S, Krishnan, B & Ravindran, NC (2017). Non-alcoholic fatty liver disease: A clinical update. J Clin Transl Hepatol 5, 384393.Google ScholarPubMed
Park, KS, Jang, BK, Chung, WJ, Cho, KB, Hwang, JS, Ahn, SH, Kang, YN, Hwang, JB & Keum, DY (2005). Abnormal electron microscopic findings of nonalcoholic steatohepatitis and related factors. Korean J Gastroenterol 45, 417424.Google ScholarPubMed
Pierantonelli, I & Svegliati-Baroni, G (2019). Nonalcoholic fatty liver disease: Basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation 103, E1E13.CrossRefGoogle ScholarPubMed
Porcu, C, Sideri, S, Martini, M, Cocomazzi, A, Galli, A, Tarantino, G & Balsano, C (2018). Oleuropein induces AMPK-dependent autophagy in NAFLD mice, regardless of the gender. Int J Mol Sci 19, 3948.CrossRefGoogle ScholarPubMed
Qureshi, K & Abrams, GA (2007). Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 13, 35403553.CrossRefGoogle ScholarPubMed
Rautou, PE, Mansouri, A, Lebrec, D, Durand, F, Valla, D & Moreau, R (2010). Autophagy in liver diseases. J Hepatol 53, 11231134.CrossRefGoogle ScholarPubMed
Saito, T, Misawa, K & Kawata, S (2007). Fatty liver and non-alcoholic steatohepatitis. Intern Med 46, 101103.CrossRefGoogle ScholarPubMed
Scaglioni, F, Ciccia, S, Marino, M, Bedogni, G & Bellentani, S (2011). ASH and NASH. Digest Dis 29, 202210.CrossRefGoogle ScholarPubMed
Schulze, RJ, Sathyanarayan, A & Mashek, DG (2017). Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 1862, 11781187.CrossRefGoogle ScholarPubMed
Schuster, S, Cabrera, D, Arrese, M & Feldstein, AE (2018). Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 15, 349364.CrossRefGoogle Scholar
Stanković, M. N., Mladenović, D. R., Đuričić, I., Šobajić, S. S., Timić, J., Jorgačević, B., Aleksić, V., Vučević, D. B., Ješić-Vukićević, R. & Radosavljević, T. S. (2014). Time-dependent changes and association between liver free fatty acids, serum lipid profile and histological features in mice model of nonalcoholic fatty liver disease. Arch Med Res 45, 116124.CrossRefGoogle ScholarPubMed
Takahashi, Y, Soejima, Y & Fukusato, T (2012). Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 18, 23002308.CrossRefGoogle ScholarPubMed
Tsai, MT, Chen, CY, Pan, YH, Wang, SH, Mersmann, HJ & Ding, ST (2015). Alleviation of carbon-tetrachloride-induced liver injury and fibrosis by betaine supplementation in chickens. Evid Based Complementary Altern Med 2015, 725379. doi:10.1155/2015/725379.CrossRefGoogle ScholarPubMed
Ucar, F, Sezer, S, Erdogan, S, Akyol, S, Armutcu, F & Akyol, O (2013). The relationship between oxidative stress and nonalcoholic fatty liver disease: Its effects on the development of nonalcoholic steatohepatitis. Redox Rep 18, 127133.CrossRefGoogle ScholarPubMed
Veskovic, M, Mladenovic, D, Milenkovic, M, Tosic, J, Borozan, S, Gopcevic, K, Labudovic-Borovic, M, Dragutinovic, V, Vucevic, D, Jorgacevic, B, Isakovic, A, Trajkovic, V & Radosavljevic, T (2019). Betaine modulates oxidative stress, inflammation, apoptosis, autophagy, and Akt/mTOR signaling in methionine-choline deficiency-induced fatty liver disease. Eur J Pharmacol 848, 3948.CrossRefGoogle ScholarPubMed
Wang, L, Zhang, H, Zhou, J, Liu, Y, Yang, Y, Chen, X, Zhu, C, Zheng, R, Ling, W & Zhu, H (2014). Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J Nutr Biochem 25, 329–36.CrossRefGoogle ScholarPubMed
Wei, Y, Rector, RS, Thyfault, JP & Ibdah, JA (2008). Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol 14, 193199.CrossRefGoogle ScholarPubMed
Wu, WKK, Zhang, L & Chan, MTV (2018). Autophagy, NAFLD and NAFLD-related HCC. Adv Exp Med Biol 1061, 127138.CrossRefGoogle ScholarPubMed
Xu, L, Huang, D, Hu, Q, Wu, J, Wang, Y & Feng, J (2015). Erratum: Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet. Br J Nutr 114, 995996.CrossRefGoogle ScholarPubMed
Yang, W, Gao, J, Tai, Y, Chen, M, Huang, L, Wen, S, Huang, Z, Liu, R, Li, J & Tang, C (2016). Betaine attenuates alcohol-induced pancreatic steatosis. Pancreas 45, 836845.CrossRefGoogle ScholarPubMed