Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T04:02:07.673Z Has data issue: false hasContentIssue false

Early Spreading and Propagation of Human Bone Marrow Stem Cells on Isotropic and Anisotropic Topographies of Silica Thin Films Produced via Microstamping

Published online by Cambridge University Press:  22 October 2010

A. Pelaez-Vargas*
Affiliation:
INEB - Instituto de Engenharia Biomédica and Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Porto, Portugal Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
D. Gallego-Perez
Affiliation:
Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
N. Ferrell
Affiliation:
Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
M.H. Fernandes
Affiliation:
Universidade do Porto, Faculdade de Medicina Dentária, Laboratório de Farmacologia e Biocompatibilidade, Porto, Portugal
D. Hansford
Affiliation:
Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
F.J. Monteiro
Affiliation:
INEB - Instituto de Engenharia Biomédica and Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Porto, Portugal
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

While there has been rapid development of microfabrication techniques to produce high-resolution surface modifications on a variety of materials in the last decade, there is still a strong need to produce novel alternatives to induce guided tissue regeneration on dental implants. High-resolution microscopy provides qualitative and quantitative techniques to study cellular guidance in the first stages of cell-material interactions. The purposes of this work were (1) to produce and characterize the surface topography of isotropic and anisotropic microfabricated silica thin films obtained by sol-gel processing, and (2) to compare the in vitro biological behavior of human bone marrow stem cells on these surfaces at early stages of adhesion and propagation. The results confirmed that a microstamping technique can be used to produce isotropic and anisotropic micropatterned silica coatings. Atomic force microscopy analysis was an adequate methodology to study in the same specimen the sintering derived contraction of the microfabricated coatings, using images obtained before and after thermal cycle. Hard micropatterned coatings induced a modulation in the early and late adhesion stages of cell-material and cell-cell interactions in a geometry-dependent manner (i.e., isotropic versus anisotropic), as it was clearly determined, using scanning electron and fluorescence microscopies.

Type
Special Section from Portugal Meeting
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrektsson, T., Sennerby, L. & Wennerberg, A. (2008). State of the art of oral implants. Periodontology 2000 47, 1526.CrossRefGoogle ScholarPubMed
Albrektsson, T. & Wennerberg, A. (2004). Oral implant surfaces: Part 1—Review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17(5), 536543.Google Scholar
Batista, L.H., Junior, J.G., Silva, M.F. & Tonholo, J. (2007). Atomic force microscopy of removal of dentin smear layers. Microsc Microanal 13(4), 245250.CrossRefGoogle ScholarPubMed
Baudino, T.A., McFadden, A., Fix, C., Hastings, J., Price, R. & Borg, T.K. (2008). Cell patterning: Interaction of cardiac myocytes and fibroblasts in three-dimensional culture. Microsc Microanal 14(2), 117125.CrossRefGoogle ScholarPubMed
Bohil, A.B., Robertson, B.W. & Cheney, R.E. (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci USA 103(33), 1241112416.CrossRefGoogle ScholarPubMed
Brunette, D.M., Kenner, G.S. & Gould, T.R. (1983). Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res 62(10), 10451048.CrossRefGoogle ScholarPubMed
Curtis, A. & Wilkinson, C. (1997). Topographical control of cells. Biomaterials 18(24), 15731583.CrossRefGoogle ScholarPubMed
Curtis, A.S. (2001). Cell reactions with biomaterials: The microscopies. Eur Cell Mater 1, 5965.CrossRefGoogle ScholarPubMed
Dalby, M.J., Riehle, M.O., Johnstone, H., Affrossman, S. & Curtis, A.S. (2004). Investigating the limits of filopodial sensing: A brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int 28(3), 229236.CrossRefGoogle ScholarPubMed
Durán, A., Conde, A., Coedo, A.G., Dorado, T., García, C. & Ceré, S. (2004). Sol-gel coatings for protection and bioactivation of metals used in orthopaedic devices. J Mater Chem 14(14), 22822290.CrossRefGoogle Scholar
Falconnet, D., Csucs, G., Grandin, H.M. & Textor, M. (2006). Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27(16), 30443063.CrossRefGoogle ScholarPubMed
Gallardo, J., Galliano, P. & Durán, A. (2000a). Thermal evolution of hybrid sol-gel silica coatings: A structural analysis. J Sol-Gel Sci Technol 19(1), 393397.CrossRefGoogle Scholar
Gallardo, J., Galliano, P., Moreno, R. & Durán, A. (2000b). Bioactive sol-gel coatings for orthopaedic prosthesis. J Sol-Gel Sci Technol 19(1–3), 107111.CrossRefGoogle Scholar
Gallego, D., Ferrell, N., Sun, Y. & Hansford, D. (2008). Multilayer micromolding of degradable polymer tissue engineering scaffolds. Mater Sci Eng C 28(3), 353358.CrossRefGoogle Scholar
Gallego-Perez, D., Higuita-Castro, N., Sharma, S., Reen, R.K., Palmer, A.F., Gooch, K.J., Lee, L.J., Lannutti, J.J. & Hansford, D.J. (2010). High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform. Lab Chip 10(6), 775782.CrossRefGoogle ScholarPubMed
Garcia, C., Ceré, S. & Durán, A. (2004). Bioactive coatings prepared by sol-gel on stainless steel 316L. J Non-Cryst Solids 348, 218224.CrossRefGoogle Scholar
Healy, K.E., Thomas, C.H., Rezania, A., Kim, J.E., McKeown, P.J., Lom, B. & Hockberger, P.E. (1996). Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17(2), 195208.CrossRefGoogle ScholarPubMed
Ito, Y. (1999). Surface micropatterning to regulate cell functions. Biomaterials 20(23–24), 23332342.CrossRefGoogle ScholarPubMed
Kim, E.J., Boehm, C.A., Mata, A., Fleischman, A.J., Muschler, G.F. & Roy, S. (2010). Post microtextures accelerate cell proliferation and osteogenesis. Acta Biomater 6(1), 160169.CrossRefGoogle ScholarPubMed
Lee, E.-J., Lee, S.H., Kim, H.W., Kong, Y.M. & Kim, H.-E. (2005). Fluoridated apatite coatings on titanium obtained by electron-beam deposition. Biomaterials 26(18), 38433851.CrossRefGoogle ScholarPubMed
Lim, J.Y. (2009). Topographic control of cell response to synthetic materials. Tissue Eng Regen Med 6(1), 365370.Google Scholar
Marzolin, C., Smith, S.P., Prentiss, M. & Whitesides, G.M. (1998). Fabrication of glass microstructures by micro-molding of sol-gel precursors. Adv Mater 10(8), 571574.3.0.CO;2-P>CrossRefGoogle Scholar
Mata, A., Boehm, C., Fleischman, A.J., Muschler, G. & Roy, S. (2002). Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J Biomed Mater Res 62(4), 499506.CrossRefGoogle ScholarPubMed
Mata, A., Kim, E.J., Boehm, C.A., Fleischman, A.J., Muschler, G.F. & Roy, S. (2009). A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials 30(27), 46104617.CrossRefGoogle ScholarPubMed
Meirelles, L., Currie, F., Jacobsson, M., Albrektsson, T. & Wennerberg, A. (2008). The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Int J Oral Maxillofac Implants 23(4), 641647.Google ScholarPubMed
Nayab, S.N., Jones, F.H. & Olsen, I. (2005). Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials 26(23), 47174727.CrossRefGoogle ScholarPubMed
Pelaez-Vargas, A., Ferrell, N., Fernandes, M.H., Hansford, D. & Monteiro, F.J. (2009). Cells spreading on micro-fabricated silica thin film coatings. Microsc Microanal 15(S3), 7778.CrossRefGoogle Scholar
Perrie, W., Rushton, A., Gill, M., Fox, P. & O'Neill, W. (2005). Femtosecond laser micro-structuring of alumina ceramic. Appl Surf Sci 248(1–4), 213217.CrossRefGoogle Scholar
Rhee, S.W., Taylor, A.M., Tu, C.H., Cribbs, D.H., Cotman, C.W. & Jeon, N.L. (2005). Patterned cell culture inside microfluidic devices. Lab Chip 5(1), 102107.CrossRefGoogle ScholarPubMed
Rompen, E., Domken, O., Degidi, M., Pontes, A.E. & Piattelli, A. (2006). The effect of material characteristics, of surface topography and of implant components and connections on soft tissue integration: A literature review. Clin Oral Implants Res 17(S2), 5567.CrossRefGoogle ScholarPubMed
Sennerby, L. (2008). Dental implants: Matters of course and controversies. Periodontol 2000 47, 914.CrossRefGoogle ScholarPubMed
Silva, P.L., Santos, J.D., Monteiro, F.J. & Knowles, J.C. (1998). Adhesion and microstructural characterization of plasma-sprayed hydroxyapatite/glass ceramic coatings onto Ti-6A1-4V substrates. Surf Coat Technol 102(3), 191196.CrossRefGoogle Scholar
Tan, J. & Saltzman, W.M. (2004). Biomaterials with hierarchically defined micro- and nanoscale structure. Biomaterials 25(17), 35933601.CrossRefGoogle ScholarPubMed
Teixeira, S., Monteiro, F.J., Ferraz, M.P., Vilar, R. & Eugenio, S. (2007). Laser surface treatment of hydroxyapatite for enhanced tissue integration: Surface characterization and osteoblastic interaction studies. J Biomed Mater Res A 81(4), 920929.CrossRefGoogle ScholarPubMed
Vorobyev, A.Y. & Guo, C. (2007). Femtosecond laser structuring of titanium implants. Appl Surf Sci 253(17), 72727280.CrossRefGoogle Scholar
Wang, Y.C. & Ho, C.C. (2004). Micropatterning of proteins and mammalian cells on biomaterials. Faseb J 18(3), 525527.CrossRefGoogle ScholarPubMed
Wennerberg, A., Albrektsson, T., Andersson, B. & Krol, J.J. (1995). A histomorphometric study of screw shaped and removal torque titanium implants with three different surface topographies. Clin Oral Impl Res 6(1), 24.CrossRefGoogle ScholarPubMed
Xia, Y. & Whitesides, G.M. (1998a). Soft lithography. Ann Rev Mater Sci 28(1), 153184.CrossRefGoogle Scholar
Xia, Y. & Whitesides, G.M. (1998b). Soft lithography. Angew Chem Int Edit 37(5), 550575.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Zinger, O., Zhao, G., Schwartz, Z., Simpson, J., Wieland, M., Landolt, D. & Boyan, B. (2005). Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26(14), 18371847.CrossRefGoogle ScholarPubMed