Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T13:28:59.890Z Has data issue: false hasContentIssue false

Dopant-Site Determination in Y- and Sc-Doped (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ by Atom Location by Channeling Enhanced Microanalysis and the Role of Dopant Site on Secondary Phase Formation

Published online by Cambridge University Press:  22 December 2015

Matthias Meffert*
Affiliation:
Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, Karlsruhe, 76131, Germany
Heike Störmer
Affiliation:
Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, Karlsruhe, 76131, Germany
Dagmar Gerthsen
Affiliation:
Laboratory for Electron Microscopy (LEM), Karlsruhe Institute of Technology (KIT), Engesserstr. 7, Karlsruhe, 76131, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

(Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ (BSCF) is a promising material with mixed ionic and electronic conductivity which is considered for oxygen separation membranes. Selective improvement of material properties, e.g. oxygen diffusivity or suppression of secondary phase formation, can be achieved by B-site doping. This study is concerned with the formation of Co-oxide precipitates in undoped BSCF at typical homogenization temperatures of 1,000°C, which act as undesirable nucleation sites for other secondary phases in the application-relevant temperature range. Y-doping successfully suppresses Co-oxide formation, whereas only minor improvements are achieved by Sc-doping. To understand the reason for the different behavior of Y and Sc, the lattice sites of dopant cations in BSCF were experimentally determined in this work. Energy-dispersive X-ray spectroscopy in a transmission electron microscope was applied to locate dopant sites exploiting the atom location by channeling enhanced microanalysis technique. It is shown that Sc exclusively occupies B-cation sites, whereas Y is detected on A- and B-cation sites in Y-doped BSCF, although solely B-site doping was intended. A model is presented for the suppression of Co-oxide formation in Y-doped BSCF based on Y double-site occupancy.

Type
Materials Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, M., Xu, Q., Tichelaar, F.D. & Feldhoff, A. (2009). Local charge disproportion in a high-performance perovskite. Chem Mater 21, 635640.CrossRefGoogle Scholar
Asagi, S., Suzuki, S. & Miyayama, M. (2009). Electrode properties of Ba0.5Sr0.5CoyFe1-yO3−δ cathode materials for solid oxide fuel cell. Key Eng Mater 388, 4952.CrossRefGoogle Scholar
Baumann, S., Schulze-Küppers, F., Roitsch, S., Betz, M., Zwick, M., Pfaff, E.M., Meulenberg, W.A., Mayer, J. & Stöver, D. (2010). Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. J Memb Sci 359, 102109.CrossRefGoogle Scholar
Bosman, M. & Keast, V. J. (2008). Optimizing EELS acquisition. Ultramicroscopy 108, 837846.CrossRefGoogle ScholarPubMed
Buysse, C., Kovalevsky, A., Snijkers, F., Buekenhoudt, A., Mullens, S., Luyten, J., Kretzschmar, J. & Lenaerts, S. (2011). Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. J Memb Sci 372, 239248.CrossRefGoogle Scholar
Efimov, K., Xu, Q. & Feldhoff, A. (2010). Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 22, 58665875.CrossRefGoogle Scholar
Ge, L., Ran, R., Zhang, K., Liu, S. & Shao, Z. (2008). Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3−δ perovskite with improved operational stability. J Memb Sci 318, 182190.CrossRefGoogle Scholar
Gellings, P.J. & Bouwmeester, H.J.M. (1997). The CRC Handbook of Solid State Electrochemistry. Boca Raton, FL, USA: CRC Press.Google Scholar
Han, D., Kishida, K., Shinoda, K., Inui, H. & Uda, T. (2013). A comprehensive understanding of structure and site occupancy of Y in Y-doped BaZrO3. J Mater Chem A 1, 30273033.CrossRefGoogle Scholar
Haworth, P., Smart, S., Glasscock, J. & Diniz da Costa, J.C. (2011). Yttrium doped BSCF membranes for oxygen separation. Sep Purif Technol 81, 8893.CrossRefGoogle Scholar
Haworth, P., Smart, S., Glasscock, J. & Diniz da Costa, J.C. (2012). High performance yttrium-doped BSCF hollow fibre membranes. Sep Purif Technol 94, 1622.CrossRefGoogle Scholar
Horita, Z., Kuninaka, H., Sano, T., Nemoto, M. & Spence, J.C.H. (1993). Delocalization corrections using a disordered structure for atom location by channelling-enhanced microanalysis in the Ni-Al system. Philos Mag A 67, 425432.CrossRefGoogle Scholar
Kelly, P.M., Jostsons, A., Blake, R.G. & Napier, J.G. (1975). The determination of foil thickness by scanning transmission electron microscopy. Phys Status Solidi A 31, 771780.CrossRefGoogle Scholar
Krishnan, K.M. (1988). Atomic site and species determinations using channeling and related effects in analytical electron microscopy. Ultramicroscopy 24, 125141.CrossRefGoogle Scholar
Liang, F., Jiang, H., Luo, H., Caro, J. & Feldhoff, A. (2011). Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chem Mater 23, 47654772.CrossRefGoogle Scholar
Liebscher, C.H., Preussner, J., Voelkl, R. & Glatzel, U. (2008). Atomic site location by channelling enhanced microanalysis (ALCHEMI) in γ’-strengthened Ni- and Pt-base alloys. Acta Mater 56, 42674276.CrossRefGoogle Scholar
Lu, H., Cong, Y. & Yang, W. (2007). Oxygen permeability and improved stability of a permeable Zr-substituted perovskite membrane for air separation. Mater Sci Eng B 141, 5560.CrossRefGoogle Scholar
McIntosh, S., Vente, J.F., Haije, W.G., Blank, D.H.A. & Bouwmeester, H.J.M. (2006). Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 177, 17371742.CrossRefGoogle Scholar
Meng, X., Yang, N., Meng, B., Tan, X., Ma, Z.-F. & Liu, S. (2011). Zirconium stabilized Ba0.5Sr0.5(Co0.8−xZrx)Fe0.2O3−α perovskite hollow fibre membranes for oxygen separation. Ceram Int 37, 27012709.CrossRefGoogle Scholar
Morimura, T. & Hasaka, M. (2004). Electron channeling X-ray microanalysis for site occupation in β-FeSi2 doped with Co. Mater Charact 52, 3541.CrossRefGoogle Scholar
Morimura, T. & Hasaka, M. (2006). ALCHEMI for coexistent Heusler and half-Heusler phases in TiNi1.5Sn. Ultramicroscopy 106, 553560.CrossRefGoogle Scholar
Mueller, D.N., De Souza, R.A., Weirich, T.E., Roehrens, D., Mayer, J. & Martin, M. (2010). A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1−xCo0.8Fe0.2O3−δ (BSCF) (x=0.1 and 0.5). Phys Chem Chem Phys 12, 1032010328.CrossRefGoogle ScholarPubMed
Müller, P., Dieterle, L., Müller, E., Störmer, H., Gerthsen, D., Niedrig, C., Taufall, S., Wagner, S.F. & Ivers-Tiffée, E. (2010). Ba0.5Sr0.5Co0.8Fe0.2O3−δ for oxygen separation membranes. ECS Trans 28, 309314.CrossRefGoogle Scholar
Müller, P., Meffert, M., Störmer, H. & Gerthsen, D. (2013 a). Fast mapping of the cobalt-valence state in Ba0.5Sr0.5Co0.8Fe0.2O3-d by electron energy loss spectroscopy. Microsc Microanal 19, 15951605.CrossRefGoogle Scholar
Müller, P., Störmer, H., Dieterle, L., Niedrig, C., Ivers-Tiffée, E. & Gerthsen, D. (2012). Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3−δ between 700°C and 1000°C analyzed by electron microscopic techniques. Solid State Ionics 206, 5766.CrossRefGoogle Scholar
Müller, P., Störmer, H., Meffert, M., Dieterle, L., Niedrig, C., Wagner, S.F., Ivers-Tiffée, E. & Gerthsen, D. (2013 b). Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3−d studied by electron microscopy. Chem Mater 25, 564573.CrossRefGoogle Scholar
Niedrig, C., Taufall, S., Burriel, M., Menesklou, W., Wagner, S.F., Baumann, S. & Ivers-Tiffée, E. (2011). Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Solid State Ionics 197, 2531.CrossRefGoogle Scholar
Nüchter, W. & Sigle, W. (1995). Electron channelling: A method in real-space crystallography and a comparison with the atomic location by channelling-enhanced microanalysis. Philos Mag A 71, 165186.CrossRefGoogle Scholar
Oxley, M.P. & Allen, L.J. (1999). Impact parameters for ionization by high-energy electrons. Ultramicroscopy 80, 125131.CrossRefGoogle Scholar
Oxley, M.P. & Allen, L.J. (2000). Atomic scattering factors for K-shell and L-shell ionization by fast electrons. Acta Crystallogr A 56, 470490.CrossRefGoogle ScholarPubMed
Oxley, M.P. & Allen, L.J. (2003). ICSC. J Appl Crystallogr 36, 940943.CrossRefGoogle Scholar
Pennycook, S.J. (1988). Delocalization corrections for electron channeling analysis. Ultramicroscopy 26, 239248.CrossRefGoogle Scholar
Rahaman, M.N. (2003). Ceramic Processing and Sintering. 2nd ed.Boca Raton, FL, USA: CRC Press.Google Scholar
Ravkina, O., Klande, T. & Feldhoff, A. (2013). Investigation of Zr-doped BSCF perovskite membrane for oxygen separation in the intermediate temperature range. J Solid State Chem 201, 101106.CrossRefGoogle Scholar
Sasaki, S., Fujino, K. & Takéuchi, Y. (1979). X-ray determination of electron-density distributions in oxides, MgO, MnO, CoO, and NiO, and atomic scattering factors of their constituent atoms. Proc Jpn Acad Ser B Phys Biol Sci 55, 4348.CrossRefGoogle Scholar
Shannon, R.D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32, 751767.CrossRefGoogle Scholar
Shao, Z. & Haile, S.M. (2004). A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170173.CrossRefGoogle ScholarPubMed
Shao, Z., Yang, W., Cong, Y., Dong, H., Tong, J. & Xiong, G. (2000). Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Memb Sci 172, 177188.CrossRefGoogle Scholar
Soeda, T., Matsumura, S., Kinoshita, C. & Zaluzec, N.J. (2000). Cation disordering in magnesium aluminate spinel crystals induced by electron or ion irradiation. J Nucl Mater 283–287, 952956.CrossRefGoogle Scholar
Spence, J., Kuwabara, M. & Kim, Y. (1988). Localization effects on quantification in axial and planar ALCHEMI. Ultramicroscopy 26, 103112.CrossRefGoogle Scholar
Stadelmann, P. (2003). Image analysis and simulation software in transmission electron microscopy. Microsc Microanal 9, 6061.CrossRefGoogle Scholar
Švarcová, S., Wiik, K., Tolchard, J., Bouwmeester, H.J.M. & Grande, T. (2008). Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178, 17871791.CrossRefGoogle Scholar
Taftø, J. & Spence, J. (1982). Crystal site location of iron and trace elements in a magnesium-iron olivine by a new crystallographic technique. Science 218, 4951.CrossRefGoogle Scholar
Tomkiewicz, A.C., Tamimi, M.A., Huq, A. & McIntosh, S. (2013). Evidence for the low oxygen stoichiometry of cubic Ba0.5Sr0.5Co0.5Fe0.5O3−δ from in-situ neutron diffraction. Solid State Ionics 253, 2731.CrossRefGoogle Scholar
Vente, J.F., McIntosh, S., Haije, W.G. & Bouwmeester, H.J.M. (2006). Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. J Solid State Electrochem 10, 581588.CrossRefGoogle Scholar
Yakovlev, S., Yoo, C.Y., Fang, S. & Bouwmeester, H.J.M. (2010). Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide probed by electrical conductivity relaxation. Appl Phys Lett 96, 254101.CrossRefGoogle Scholar
Zeng, P., Chen, Z., Zhou, W., Gu, H., Shao, Z. & Liu, S. (2007). Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane. J Memb Sci 291, 148156.CrossRefGoogle Scholar
Zhang, K., Ran, R., Ge, L., Shao, Z., Jin, W. & Xu, N. (2009). Double-site yttria-doped Sr1−xYxCo1−yYyO3−δ perovskite oxides as oxygen semi-permeable membranes. J Alloys Compd 474, 477483.CrossRefGoogle Scholar