Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T15:32:03.378Z Has data issue: false hasContentIssue false

Direct Observations of Confined Layer Slip in Cu/Nb Multilayers

Published online by Cambridge University Press:  16 October 2012

Nan Li*
Affiliation:
Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Jian Wang
Affiliation:
Materials Science and Technology Division, MST-8, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Amit Misra
Affiliation:
Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Jian Yu Huang
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

In situ nanoindentation of a 30 nm Cu/20 nm Nb multilayer film in a transmission electron microscope revealed confined layer slip as the dominant deformation mechanism. Dislocations were observed to nucleate from the Cu-Nb interfaces in both layers. Dislocation glide was confined by interfaces to occur within each layer, without transmission across interfaces. Cu and Nb layers co-deformed to large plastic strains without cracking. These microscopy observations provide insights in the unit mechanisms of deformation, work hardening, and recovery in nanoscale metallic multilayers.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdolrahim, N., Mastorakos, I.N. & Zbib, H.M. (2010). Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys Rev B 81, 054117. Google Scholar
Anderson, P.M., Bingert, J.F., Misra, A. & Hirth, J.P. (2003). Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater 51, 60596075.Google Scholar
Anderson, P.M. & Carpenter, J.S. (2010). Estimates of interfacial properties in Cu/Ni multilayer thin films using hardness data. Scripta Mater 62, 325328.Google Scholar
Anderson, P.M., Foecke, T. & Hazzledine, P.M. (1999). Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull 24, 2733.Google Scholar
Anderson, P.M. & Li, C. (1995). Hall-Petach relations for multilayered materials. Nanostruct Mater 5, 349362.Google Scholar
Beyerlein, I.J., Mara, N.A., Bhattacharyya, D., Alexander, D.J. & Necker, C.T. (2010). Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int J Plasticity 27, 121146.Google Scholar
Budiman, A.S., Li, N., Wei, Q., Baldwin, J.K., Xiong, J., Luo, H., Trugman, D., Jia, Q.X., Tamura, N., Kunz, M., Chen, K. & Misra, A. (2011). Growth and structural characterization of epitaxial Cu/Nb multilayers. Thin Solid Films 13, 41374143.Google Scholar
Dehm, G., Wagner, T., Balk, T.J., Arzt, E. & Inkson, B.J. (2002). Plasticity and interfacial dislocation mechanisms in epitaxial and polycrystalline Al films constrained by substrates. J Mater Sci Technol 18, 113117.Google Scholar
Demkowicz, M.J., Hoagland, R.G. & Hirth, J.P. (2008a). Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett 100, 136102. Google Scholar
Demkowicz, M.J., Wang, J. & Hoagland, R.G. (2008b). Dislocations in Solids, vol. 14 (chap. 83), Hirth, J.P. (Ed.). Amsterdam: Elsevier North-Holland.Google Scholar
Derlet, P.M., Gumbsch, P., Hoagland, R.G., Li, J., McDowel, D.L., Van Swygenhoven, H. & Wang, J. (2009). Atomistic simulations of dislocations in confined volumes. MRS Bull 34, 184189.Google Scholar
Embury, J.D. & Hirth, J.P. (1994). On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall Mater 42, 20512056.Google Scholar
Friedman, L.H. & Chrzan, D.C. (1998). Scaling theory of the Hall-Petch relation for multilayers. Phys Rev Lett 81, 27152718.Google Scholar
Henager, C.H., Kurtz, R.J. & Hoagland, R.G. (2004). Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos Mag 84, 22772303.Google Scholar
Hirth, J.P. (1972). Influence of grain-boundaries on mechanical properties. Metall Trans 3, 30473067.CrossRefGoogle Scholar
Hirth, J.P. & Lothe, J. (1982). Theory of Dislocations. New York: Wiley.Google Scholar
Hoagland, R.G., Hirth, J.P. & Misra, A. (2006). On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos Mag 86, 35373558.Google Scholar
Hoagland, R.G., Kurtz, R.J. & Henager, C.H. (2004). Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater 50, 775779.CrossRefGoogle Scholar
Inkson, B.J., Dehm, G. & Wagner, T. (2002). In situ TEM observation of dislocation motion in thermally strained Al nanowires. Acta Mater 50, 50335047.Google Scholar
Jin, M., Minor, A.M., Stach, E.A. & Morris, J.W. Jr. (2004). Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater 52, 53815387.Google Scholar
Kiener, D. & Minor, A.M. (2011). Source truncation and exhaustion: Insights from quantitative in situ TEM tensile testing. Nano Lett 11, 38163820.Google Scholar
Koehler, J.S. (1970). Attempt to design a strong solid. Phys Rev B 2, 547551.Google Scholar
Legros, M., Gianola, D.S. & Hemker, K.J. (2008). In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56, 33803393.Google Scholar
Li, N., Wang, J., Huang, J.Y., Misra, A. & Zhang, X. (2010a). In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scripta Mater 63, 363366.Google Scholar
Li, N., Wang, J., Huang, J.Y., Misra, A. & Zhang, X. (2010b). Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. Scripta Mater 64, 149152.Google Scholar
Li, N., Wang, J., Misra, A., Zhang, X., Huang, J.Y. & Hirth, J.P. (2011). Twinning dislocation multiplication at a coherent twin boundary. Acta Mater 59, 59895996.Google Scholar
Li, Y.P. & Zhang, G.P. (2010). On plasticity and fracture of nanostructured Cu/X (X = Au, Cr) multilayers: The effects of length scale and interface/boundary. Acta Mater 58, 38773887.Google Scholar
Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G. & Misra, A. (2008). Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett 92, 231901. Google Scholar
Mara, N.A., Bhattacharyya, D., Hirth, J.P., Dickerson, P. & Misra, A. (2010). Mechanism for shear banding in nanolayered composites. Appl Phys Lett 97, 021909. CrossRefGoogle Scholar
Misra, A., Hirth, J.P. & Hoagland, R.G. (2005a). Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53, 48174824.Google Scholar
Misra, A., Hirth, J.P., Hoagland, R.G., Enbury, J.D. & Kung, H. (2004). Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater 52, 23872397.Google Scholar
Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E. & Nastasi, M. (1998). Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scripta Mater 39, 555560.Google Scholar
Misra, A., Zhang, X., Hammon, D. & Hoagland, R.G. (2005b). Work hardening in rolled nanolayered metallic composites. Acta Mater 53, 221226.Google Scholar
Nix, W.D. (1989). Mechanical-properties of thin-films. Metall Trans A 20A, 22172245.Google Scholar
Oh, S.H., Legros, M., Kiener, D. & Dehm, G. (2009). In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater 8, 95100.Google Scholar
Oh, S.H., Legros, M., Kiener, D., Gruber, P. & Dehm, G. (2007). In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Mater 55, 55585571.Google Scholar
Overman, N.R., Overman, C.T., Zbib, H.M. & Bahr, D.F. (2009). Yield and deformation in biaxially stressed multilayer metallic thin films. J Eng Mater Technol 131, 041203. Google Scholar
Pande, C.S., Masumura, R.A. & Armstrong, R.W. (1993). Pile-up based Hall-Petch relation for nanoscale materials. Nanostruct Mater 2, 323331.Google Scholar
Philips, M.A., Clemens, B.M. & Nix, W.D. (2003). Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater 51, 31713184.Google Scholar
Quek, S.S., Xiang, Y., Zhang, Y.W., Srolovitz, D.J. & Lu, C. (2006). Level set simulation of dislocation dynamics in thin films. Acta Mater 54, 23712381.Google Scholar
Quek, S.S., Zhang, Y.W., Xiang, Y. & Srolovitz, D.J. (2010). Dislocation cross-slip in heteroepitaxial multilayer films. Acta Mater 58, 226234.CrossRefGoogle Scholar
Rao, S.I. & Hazzledine, P.M. (2000). Atomistic simulations of dislocation-interface interactions in the Cu-Ni multilayer system. Philos Mag A 80, 20112040.Google Scholar
Robach, J.S., Robertson, I.M., Lee, H.J. & Wirth, B.D. (2006). Dynamic observations and atomistic simulations of dislocation–defect interactions in rapidly quenched copper and gold. Acta Mater 54, 16791690.Google Scholar
Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L. & Minor, A.M. (2008). Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 73, 115119.Google Scholar
Sutton, A.P. & Balluffi, R.W. (1995). Interfaces in Crystalline Materials. Oxford, UK: Oxford University Press.Google Scholar
Wang, J., Hoagland, R.G., Liu, X.Y. & Misra, A. (2011). The influence of interface shear strength on the glide dislocation–interface interactions. Acta Mater 59, 31643173.Google Scholar
Wang, J., Hoagland, R.G. & Misra, A. (2009a). Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale. Scripta Mater 60, 10671072.Google Scholar
Wang, J., Hoagland, R.G. & Misra, A. (2009b). Room-temperature dislocation climb in metallic interfaces. Appl Phys Lett 94, 131910. Google Scholar
Wang, J. & Misra, A. (2011). An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid St M 15, 2028.Google Scholar
Zhang, R.F., Wang, J., Beyerlein, I.J. & Germann, T.C. (2011). Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces. Scripta Mater 65, 10221025.CrossRefGoogle Scholar
Zheng, H., Cao, A.J., Weinberger, C.R., Huang, J.Y., Du, K., Wang, J.B., Ma, Y.Y., Xia, Y.N. & Mao, S.X. (2010). Discrete plasticity in sub-10-nm-sized gold crystals. Nature Commun 1, 144.Google Scholar
Zhu, T. & Li, J. (2010). Ultra-strength materials. Prog Mater Sci 55, 710757.Google Scholar
Zhu, X.F., Zhang, B., Gao, J. & Zhang, G.P. (2009). Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scripta Mater 60, 178181.Google Scholar
Zhu, X.F. & Zhang, G.P. (2009). Tensile and fatigue properties of ultrafine Cu-Ni multilayers. J Phys D 42, 055411. Google Scholar

Li et al. supplementary movie

Movie 1

Download Li et al. supplementary movie(Video)
Video 2.5 MB

Li et al. supplementary movie

Movie 2

Download Li et al. supplementary movie(Video)
Video 791.4 KB

Li et al. supplementary movie

Movie 3

Download Li et al. supplementary movie(Video)
Video 10.2 MB

Li et al. supplementary movie

Movie 4

Download Li et al. supplementary movie(Video)
Video 2.1 MB