Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T07:03:59.407Z Has data issue: false hasContentIssue false

Correlating Atom Probe Tomography with Atomic-Resolved Scanning Transmission Electron Microscopy: Example of Segregation at Silicon Grain Boundaries

Published online by Cambridge University Press:  20 February 2017

Andreas Stoffers*
Affiliation:
Institute of Physics (IA), RWTH Aachen University, Otto-Blumenthal-Straβe, 52074 Aachen, Germany Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straβe 1, 40237 Düsseldorf, Germany
Juri Barthel
Affiliation:
Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraβe 55, 52074 Aachen, Germany Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Christian H. Liebscher
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straβe 1, 40237 Düsseldorf, Germany
Baptiste Gault
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straβe 1, 40237 Düsseldorf, Germany
Oana Cojocaru-Mirédin
Affiliation:
Institute of Physics (IA), RWTH Aachen University, Otto-Blumenthal-Straβe, 52074 Aachen, Germany Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straβe 1, 40237 Düsseldorf, Germany
Christina Scheu
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straβe 1, 40237 Düsseldorf, Germany
Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straβe 1, 40237 Düsseldorf, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

In the course of a thorough investigation of the performance-structure-chemistry interdependency at silicon grain boundaries, we successfully developed a method to systematically correlate aberration-corrected scanning transmission electron microscopy and atom probe tomography. The correlative approach is conducted on individual APT and TEM specimens, with the option to perform both investigations on the same specimen in the future. In the present case of a Σ9 grain boundary, joint mapping of the atomistic details of the grain boundary topology, in conjunction with chemical decoration, enables a deeper understanding of the segregation of impurities observed at such grain boundaries.

Type
New Approaches and Correlative Microscopy
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babinsky, K., De Kloe, R., Clemens, H. & Primig, S. (2014). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 918.Google Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.CrossRefGoogle ScholarPubMed
Blavette, D., Wang, H., Bonvalet, M., Hüe, F. & Duguay, S. (2014). Atom-probe tomography study of boron precipitation in highly implanted silicon. Phys Status Solidi A 211(1), 126130.Google Scholar
Brandon, D.G. (1966). Structure of high-angle grain boundaries. Acta Metall 14(11), 14791484.Google Scholar
Cojocaru-Mirédin, O., Mangelinck, D. & Blavette, D. (2009). Nucleation of boron clusters in implanted silicon. J Appl Phys 106(11), 113525.Google Scholar
Couillard, M., Radtke, G. & Botton, G.A. (2013). Strain fields around dislocation arrays in a Σ9 silicon bicrystal measured by scanning transmission electron microscopy. Philos Mag 93(10–12), 12501267.Google Scholar
Dabrowski, J. & Müssig, H.-J. (2000). Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World. World Scientific, Singapore.Google Scholar
Di Sabatino, M. & Stokkan, G. (2013). Defect generation, advanced crystallization, and characterization methods for high-quality solar-cell silicon. Phys Status Solidi A 210(4), 641648.CrossRefGoogle Scholar
Felfer, P.J., Alam, T., Ringer, S.P. & Cairney, J.M. (2012). A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Tech 75(4), 484491.Google Scholar
Herbig, M., Choi, P. & Raabe, D. (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153(0), 3239.Google Scholar
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S. & Goto, S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112(12), 126103.CrossRefGoogle ScholarPubMed
Istratov, A.A., Buonassisi, T., McDonald, R.J., Smith, A.R., Schindler, R., Rand, J.A., Kalejs, J.P. & Weber, E.R. (2003). Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length. J Appl Phys 94(10), 65526559.Google Scholar
Käshammer, P. & Sinno, T. (2015). A mechanistic study of impurity segregation at silicon grain boundaries. J Appl Phys 118(9), 095301.Google Scholar
Krakauer, B.W. & Seidman, D.N. (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48(9), 67246727.Google Scholar
Kuzmina, M., Herbig, M., Ponge, D., Sandlöbes, S. & Raabe, D. (2015). Linear complexions: Confined chemical and structural states at dislocations. Science 349(6252), 10801083.CrossRefGoogle ScholarPubMed
Kveder, V., Kittler, M. & Schröter, W. (2001). Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced current contrast behavior. Phys Rev B 63(11), 115208.CrossRefGoogle Scholar
Langford, R., Huang, Y., Lozano-Perez, S., Titchmarsh, J. & Petford-Long, A. (2001). Preparation of site specific transmission electron microscopy plan-view specimens using a focused ion beam system. J Vac Sci Technol B 19(3), 755758.Google Scholar
Lefebvre, W., Hernandez-Maldonado, D., Moyon, F., Cuvilly, F., Vaudolon, C., Shinde, D. & Vurpillot, F. (2015). HAADF–STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy. Ultramicroscopy 159((Pt 2), 403412.CrossRefGoogle ScholarPubMed
Ohno, Y., Inoue, K., Tokumoto, Y., Kutsukake, K., Yonenaga, I., Ebisawa, N., Takamizawa, H., Shimizu, Y., Inoue, K., Nagai, Y., Yoshida, H. & Takeda, S. (2013). Three-dimensional evaluation of gettering ability of Sigma 3{111} grain boundaries in silicon by atom probe tomography combined with transmission electron microscopy. Appl Phys Lett 103(10), 102102.Google Scholar
Philippe, T., De Geuser, F., Duguay, S., Lefebvre, W., Cojocaru-Mirédin, O., Da Costa, G. & Blavette, D. (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109(10), 13041309.CrossRefGoogle ScholarPubMed
Pizzini, S., Acciarri, M. & Binetti, S. (2005). From electronic grade to solar grade silicon: Chances and challenges in photovoltaics. Phys Status Solidi A 202(15), 29282942.CrossRefGoogle Scholar
Riepe, S., Reis, I.E., Kwapil, W., Falkenberg, M.A., Schön, J., Behnken, H., Bauer, J., Kreßner-Kiel, D., Seifert, W. & Koch, W. (2011). Research on efficiency limiting defects and defect engineering in silicon solar cells—results of the German research cluster SolarFocus. Phys Status Solidi C 8(3), 733738.CrossRefGoogle Scholar
Rigutti, L., Blum, I., Shinde, D., Hernández-Maldonado, D., Lefebvre, W., Houard, J., Vurpillot, F., Vella, A., Tchernycheva, M., Durand, C., Eymery, J. & Deconihout, B. (2014). Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system. Nano Lett 14(1), 107114.Google Scholar
Schaffer, M., Schaffer, B. & Ramasse, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.CrossRefGoogle ScholarPubMed
Stoffers, A., Cojocaru-Mirédin, O., Seifert, W., Zaefferer, S., Riepe, S. & Raabe, D. (2015 a). Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Prog Photovolt Res Appl 23(12), 17421753.CrossRefGoogle Scholar
Stoffers, A., Ziebarth, B., Barthel, J., Cojocaru-Mirédin, O., Elsässer, C. & Raabe, D. (2015 b). Complex nanotwin substructure of an asymmetric Σ9 tilt grain boundary in a silicon polycrystal. Phys Rev Lett 115(23), 235502.Google Scholar
Thompson, K., Booske, J.H., Larson, D.J. & Kelly, T.F. (2005). Three-dimensional atom mapping of dopants in Si nanostructures. Appl Phys Lett 87(5), 052108.CrossRefGoogle Scholar
Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J. & Kelly, T.F. (2007 a). Imaging of arsenic cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317(5843), 13701374.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007 b). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131139.Google Scholar
Thuvander, M., Stiller, K., Blavette, D. & Menand, A. (1996). Grain boundary precipitation and segregation in Ni·16Cr·9Fe model materials. Appl Surf Sci 94, 343350.Google Scholar
Weber, J., Barthel, J., Brandt, F., Klinkenberg, M., Breuer, U., Kruth, M. & Bosbach, D. (2016). Nano-structural features of barite crystals observed by electron microscopy and atom probe tomography. Chem Geol 424, 5159.CrossRefGoogle Scholar
Ziebarth, B., Mrovec, M., Elsässer, C. & Gumbsch, P. (2015). Interstitial iron impurities at grain boundaries in silicon: A first-principles study. Phys Rev B 91(3), 035309.CrossRefGoogle Scholar