Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T08:29:49.234Z Has data issue: false hasContentIssue false

Compositional and Structural Study of a (K0.5Na0.5)NbO3 Single Crystal Prepared by Solid State Crystal Growth

Published online by Cambridge University Press:  27 August 2009

Andreja Benčan*
Affiliation:
Electronic Ceramics Department, Jožef Stefan Institute, Jamova c. 38, Ljubljana SI-1000, Slovenia
Elena Tchernychova
Affiliation:
Electronic Ceramics Department, Jožef Stefan Institute, Jamova c. 38, Ljubljana SI-1000, Slovenia
Matjaž Godec
Affiliation:
Institute of Metals and Technology, Lepi pot 11, Ljubljana SI-1000, Slovenia
John Fisher
Affiliation:
Electronic Ceramics Department, Jožef Stefan Institute, Jamova c. 38, Ljubljana SI-1000, Slovenia
Marija Kosec
Affiliation:
Electronic Ceramics Department, Jožef Stefan Institute, Jamova c. 38, Ljubljana SI-1000, Slovenia
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

In this work we investigated the chemical composition and structure of (K0.5Na0.5)NbO3 (KNN) single crystals grown by the solid state crystal growth method. The optical, scanning, and transmission electron microscopies were employed for the analysis of the chemical homogeneity and domain structure of the KNN crystal. No compositional inhomogeneities within experimental error were encountered in the KNN single crystals. The domain structure of the KNN single crystal, with a monoclinic unit cell, is composed of large 90° domains of up to 100 μm width, which further consist of smaller 180° domains with widths from 50 to 300 nm.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attia, J., Bellaiche, M., Gemeiner, P., Dkhil, B. & Malic, B. (2005). Study of potassium-sodium-niobate alloys: A combined experimental and theoretical approach. J Phys IV France 128, 5560.CrossRefGoogle Scholar
Davis, M., Klein, N., Damjanovic, D., Setter, N., Gross, A., Wesemann, V., Vernay, S. & Rytz, D. (2007). Large and stable thickness coupling coefficients of [001]c oriented KNbO3 and Li-modified (K,Na)NbO3 single crystals. Appl Phys Lett 90, 062904-3.CrossRefGoogle Scholar
Fisher, J.G., Benčan, A., Bernard, J., Holc, J., Kosec, M., Vernay, S. & Rytz, D. (2007a). Growth of (Na, K, Li)(Nb, Ta)O3 single crystals by solid state crystal growth. J Eur Ceram Soc 13-15(27), 41034106.CrossRefGoogle Scholar
Fisher, J.G., Benčan, A., Godnjavec, J. & Kosec, M. (2008a). Growth behaviour of potassium sodium niobate single crystals grown by solid-state crystal growth using K4CuNb8O23 as a sintering aid. J Eur Ceram Soc 28, 16571663.CrossRefGoogle Scholar
Fisher, J.G., Benčan, A., Holc, J., Kosec, M., Vernay, S. & Rytz, D. (2007b). Growth of potassium sodium niobate single crystals by solid state crystal growth. J Cryst Grow 303(2), 487492.CrossRefGoogle Scholar
Fisher, J.G., Benčan, A., Kosec, M., Vernay, S. & Rytz, D. (2008b). Growth of dense single crystals of potassium sodium niobate by a combination of solid-state crystal growth and hot pressing. J Am Ceram Soc 91(5), 15031507.CrossRefGoogle Scholar
Hackenberger, W.S., Luo, J., Jiang, X., Snook, K.A. & Rehring, P.W. (2008). Recent developments and applications of piezoelectric crystals. In Handbook of Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, Zuo-Guang, Y. (Eds.), pp. 7398. Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
Herber, R.P., Schneider, G.A., Wagner, S. & Hoffmann, M.J. (2007). Characterization of ferroelectric domains in morphotropic potassium sodium niobate with scanning probe microscopy. Appl Phy Lett 90, 252905-3.CrossRefGoogle Scholar
Hirohashi, J., Yamada, K., Kamio, H., Uchuda, M. & Scichijyo, S. (2005). Control of specific domain structure in KNbO3 single crystals by differential vector poling method. J Appl Phys 98, 0341071-10.CrossRefGoogle Scholar
Jaffe, B., Cook, W.R. & Jaffe, H. (1971). Perovskite niobates and tantalates and other ferroelectric and antiferroelectric perovskites. In Piezoelectric Ceramics, Roberts, J.P. & Popper, P. (Eds.), pp. 185212. New York: Academic Press.Google Scholar
Jenko, D., Benčan, A., Malič, B., Holc, J. & Kosec, M. (2005). Electron microscopy studies of potassium sodium niobate ceramics. Microsc Microanal 11, 572580.CrossRefGoogle ScholarPubMed
Kosec, M., Malič, B., Benčan, A. & Rojac, T. (2008). KNN-based piezoelectric ceramics. In Piezoelectric and Acoustic Materials for Transducer Applications, Safari, A. & Akdogan, E.K. (Eds.), pp. 82102. New York: Springer.Google Scholar
Park, S.E. & Shrout, T.R. (1997). Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4), 18041811.CrossRefGoogle Scholar
Rehrig, P.W., Messing, G.L. & Trolier-McKinstry, S. (2000). Templated grain growth of barium titanate single crystals. J Am Ceram Soc 83(11), 26542660.CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. & Nakamura, M. (2004). Lead free piezoceramics. Nature 432, 8487.CrossRefGoogle ScholarPubMed
Samardžija, Z., Bernik, S., Marinenko, R., Malič, B. & Čeh, M. (2004). An EPMA study on KNbO3 and NaNbO3 single crystals—Potential reference materials for quantitative microanalysis. Microchim Acta 145, 203208.CrossRefGoogle Scholar
Shiratori, Y., Magrez, A. & Pithan, C. (2005). Particle size effect on the crystal structure symmetry of K0.5Na0.5NbO3. J Eur Ceram Soc 25, 20752079.CrossRefGoogle Scholar
Shrout, T.S. & Zhang, S.J. (2007). Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceram 19, 111124.CrossRefGoogle Scholar
Tellier, J., Malic, B., Dkhil, B., Jenko, D., Cilensek, J. & Kosec, M. (2009). Crystal structure and phase transition of sodium potassium niobate perovskite. Solid State Sci 11(2), 320324.CrossRefGoogle Scholar
Wada, S., Muraoka, K., Kakemoto, T., Tsurumi, T. & Kumagai, H. (2005). Enhanced piezoelectric properties of potassium niobate single crystals with fine engineered domain configuration. Mater Sci Eng B 120, 186189.CrossRefGoogle Scholar
Wada, S., Seike, A. & Tsurumi, T. (2001). Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn J Appl Phys 40, 56905697.CrossRefGoogle Scholar