Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T19:55:27.011Z Has data issue: false hasContentIssue false

Chemical Shift of Electron Energy-Loss Near-Edge Structure on the Nitrogen K-Edge and Titanium L3-Edge at TiN/Ti Interface

Published online by Cambridge University Press:  16 March 2009

Shohei Terada*
Affiliation:
Materials Research Laboratory, Hitachi Ltd., 7-1-1 Omika, Hitachi, Ibaraki 319-1292, Japan
Kyoichiro Asayama
Affiliation:
Renesas Technology Corp., 5-20-1 Josuihon, Kodaira, Tokyo 187-8588, Japan
Masahiko Tsujimoto
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
Hiroki Kurata
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
Seiji Isoda
Affiliation:
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We investigated the chemical shift of the electron energy-loss near-edge structure (ELNES) for the nitrogen K-edge and titanium L3-edge measured from the interface region between a titanium nitride layer and a titanium layer. Both the titanium nitride and titanium layers were prepared by a sputtering method. Elemental analysis for nitride and titanium in the vicinity of the interface region was performed using a standard technique in electron energy-loss spectroscopy. It was demonstrated that both the ELNES of nitrogen K-edge and titanium L3-edge presented the chemical shift, more or less, depending on the composition of TiNx. The experimental findings were interpreted using a first-principles band structure calculation. The chemical shifts of nitrogen K-edge and titanium L3-edge can be used as fingerprinting for readily distinguishing the composition of TiNx.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blaha, P., Schwarz, K., Madson, H., Kvasnicka, D. & Luitz, J. (2001). WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna, Austria: Vienna University of Technology.Google Scholar
Conard, T., Kondoh, E., Maex, K. & Vandervorst, W. (1999). X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry study of the role of Ti and TiN caps on the cobalt/SiO2 interface. J Vac Sci Technol A 17, 12441249.CrossRefGoogle Scholar
Craven, A.J., Scott, C.P., MacKenzie, M., Hatto, P. & Davies, C. (1998). Advances in the characterisation of multilayered coatings using electron energy loss spectroscopy in the transmission electron microscope. Surf Coat Technol 108-109, 217224.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed., p. 245. New York: Plenum Press.CrossRefGoogle Scholar
Hebert, C., Kostner, M. & Schattschneider, P. (2000). Effect of the excited state lifetime on the near edge structure in EELS or XANES experiments. EUREM 12, 13331334.Google Scholar
Hebert-Souche, C., Louf, P.H., Blaha, P., Nelhiebel, M., Luitz, J., Schattschneider, P., Schwarz, K. & Jouffrey, B. (2000). The orientation-dependent simulation of ELNES. Ultramicroscopy 83, 916.CrossRefGoogle ScholarPubMed
Kihn, Y., Mirguet, C. & Calmels, L. (2005). EELS studies of Ti-bearing materials and ab initio calculations. J Electron Spectros Related Phenomena 143, 117127.CrossRefGoogle Scholar
Kim, S.H., Nam, K.T., Datta, A. & Kim, K.B. (2002). Failure mechanism of a multilayer (TiN/Al/TiN) diffusion barrier between copper and silicon. J Appl Phys 92, 55125519.CrossRefGoogle Scholar
Kimoto, K., Sekiguchi, T. & Aoyama, T. (1997). Chemical shift mapping of Si L and K edges using spatially resolved EELS and energy-filtering TEM. J Electron Microsc 46, 369374.CrossRefGoogle Scholar
Lim, B.K., Park, H.S., See, A.K.H., Liu, E.Z. & Wu, S.H. (2002). Comparison of in situ and ex situ plasma-treated metalorganic chemical vapor deposition titanium nitride thin films. J Vac Sci Technol B 20, 22192224.CrossRefGoogle Scholar
Lingwal, V. & Panwar, N.S. (2005). Scanning magnetron-sputtered TiN coating as diffusion barrier for silicon devices. J Appl Phys 97, 104902-1-8.CrossRefGoogle Scholar
MacKenzie, M., Weathrly, G.C., McComb, D.W. & Craven, A.J. (2005). Electron energy loss spectroscopy of a TiAlN coatings on stainless steel. Scripta Mater 53, 983987.CrossRefGoogle Scholar
Mao, D. & Hopwood, J. (2004). Ionized physical vapor deposition of titanium nitride: A deposition model. J Appl Phys 96, 820828.CrossRefGoogle Scholar
Mirguet, C., Calmels, L. & Kihn, Y. (2006). Electron energy loss spectra near structural defects in TiN and TiC. Micron 37, 442448.CrossRefGoogle ScholarPubMed
Mitsui, Y., Yano, F., Kakibayashi, H., Shichi, H. & Aoyama, T. (2001). Developments of new concept analytical instruments for failure analyses of sub-100 nm devices. Microelectron Reliab 41, 11711183.CrossRefGoogle Scholar
Montes de Oca Valero, J.A., Le Petitcorps, Y., Manaud, J.P., Chollon, G., Carrillo Romo, F.J. & Lopez, M.A. (2005). Low temperature, fast deposition of metallic titanium nitride films using plasma activated reactive evaporation. J Vac Sci Technol A 19, 22592266.Google Scholar
Muller, D.A., Singh, D.J. & Silcox, J. (1998). Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: A study of nickel aluminum alloys. Phys Rev B 57, 81818202.CrossRefGoogle Scholar
Muller, J.E. & Wilkins, J.W. (1984). Band-structure approach to the X-ray spectra of metals. Phys Rev B 29, 43314348.CrossRefGoogle Scholar
Nam, K.T., Datta, A., Kim, S.H. & Kim, K.B. (2001). Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization. Appl Phys Lett 79, 25492551.CrossRefGoogle Scholar
Nelhiebel, M., Louf, P.-H., Schattschneider, P., Blaha, P., Schwarz, K. & Jouffrey, B. (1999). Theory of orientation-sensitive near-edge fine-structure core-level spectroscopy. Phys Rev B 59, 1280712814.CrossRefGoogle Scholar
Ouellet, L., Tremblay, Y., Gagnon, G., Caron, M., Currie, J.F., Gujrathi, S.C. & Biberger, M. (1996). The effect of the Ti glue layer in an integrated Ti/TiN/Ti/AlSiCu/TiN contact metallization process. J Vac Sci Technol B 14, 26272635.CrossRefGoogle Scholar
Paxton, A.T., Van Schilfgaarde, M., MacKenzie, M. & Craven, A.J. (2000). The near-edge structure in energy-loss spectroscopy: Many-electron and magnetic effects in transition metal nitrides and carbides. J Phys: Condens Mat 12, 729750.Google Scholar
Pfluger, J., Fink, J., Crecelius, G., Bohnen, K.P. & Winter, H. (1982). Electronic structure of unoccupied states of TiC, TiN, and VN by electron-energy-loss-spectroscopy. Solid State Commun 44, 489492.CrossRefGoogle Scholar
Porte, L., Roux, L. & Hanus, J. (1983). Vacancy effects in the X-ray photoelectron spectra of TiNx. Phys Rev B 28, 32143224.CrossRefGoogle Scholar
Rez, P., Bruley, J., Brohan, P., Payne, M. & Garvie, L.A.J. (1995). Review of methods for calculating near edge structure. Ultramicroscopy 59, 159167.CrossRefGoogle Scholar
Schuler, T.M., Ederer, D.L., Ruzycki, N., Glass, G., Hollerman, W.A., Moewes, A., Kuhn, M. & Callcott, T.A. (2001). Diffusion of TiN into aluminum films measured by soft X-ray spectroscopy and Rutherford backscattering spectroscopy. J Vac Sci Technol A 19, 22592266.CrossRefGoogle Scholar
Terada, S., Aoyama, T., Yano, F. & Mitsui, Y. (2002). Time-resolved acquisition technique for spatially-resolved electron energy-loss spectroscopy by energy-filtering TEM. J Electron Microsc 51, 291296.CrossRefGoogle ScholarPubMed
Tsujimoto, M., Kurata, H., Nemoto, T., Isoda, S., Terada, S. & Kaji, K. (2005). Influence of nitrogen vacancies on the N K-ELNES spectrum of titanium nitride. J Electron Spectros 143, 159165.CrossRefGoogle Scholar
Vaz, F., Ferrira, J., Ribeiro, E., Rebouta, L., Lancerous-Mendez, S., Mendes, J.A., Alves, E., Goudeau, Ph., Riviere, J.P., Ribeiro, F., Moutinho, I., Pischow, K. & De Rijk, J. (2005). Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films. Surf Coatings Technol 191, 317323.CrossRefGoogle Scholar
Weijs, P.J.W., Czyzyk, M.T., Van Acker, J.F., Speier, W., Goadkoop, J.B., Van Leuken, H., Hendrix, H.J.M., De Groot, R.A., Van Der Laan, G., Buschow, K.H.J., Wiech, G. & Fuggle, J.C. (1990). Core-hole effects in the X-ray-absorption spectra of transition-metal silicides. Phys Rev B 41, 1189911910.CrossRefGoogle ScholarPubMed