Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T07:05:03.107Z Has data issue: false hasContentIssue false

Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

Published online by Cambridge University Press:  23 February 2017

Barnaby D.A. Levin*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Michael J. Zachman
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Jörg G. Werner
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Ritu Sahore
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Kayla X. Nguyen
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Yimo Han
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Baoquan Xie
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Lin Ma
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Lynden A. Archer
Affiliation:
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
Emmanuel P. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Ulrich Wiesner
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Lena F. Kourkoutis
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
David A. Muller
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.

Type
Materials Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, M., Dubochet, J., Lepault, J. & McDowall, A.W. (1984). Cryo-electron microscopy of viruses. Nature 308, 3236.Google Scholar
Bruce, P.G., Freunberger, S.A., Hardwick, L.J. & Tarascon, J.M. (2011). Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1), 1929.Google Scholar
Chisney, D.B., Boring, J.W., Johnson, R.E. & Phipps, J.A. (1988). Molecular ejection from low temperature sulfur by keV ions. Surf Sci 195, 594618.Google Scholar
Dubochet, J. & McDowall, A.W. (1981). Vitrification of pure water for electron microscopy. J Microsc 124, RP3RP4.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.Google Scholar
Ferreira, A.G.M. & Lobo, L.Q. (2011). The low-pressure phase diagram of sulfur. J Chem Thermodyn 43, 95104.Google Scholar
Fujimori, T., Morelos-Gómez, A., Zhu, Z., Muramatsu, H., Futamura, R., Urita, K., Terrones, M., Hayashi, T., Endo, M., Hong, S.Y., Chul Choi, Y., Tománek, D. & Kaneko, K. (2013). Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 4, 2162.Google Scholar
Han, Y., Nguyen, K., Ogawa, Y., Shi, H., Park, J. & Muller, D.A. (2015). Electron microscopy in air: Transparent atomic membranes and imaging modes. Microsc Microanal 21(S3), 11111112.CrossRefGoogle Scholar
He, G., Evers, S., Liang, X., Cuisinier, M., Garsuch, A. & Nazar, L.F. (2013). Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7, 1092010930.Google Scholar
Jayaprakash, N., Shen, J., Moganty, S.S., Corona, A. & Archer, L.A. (2011). Porous hollow carbon-sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed. 123, 60266030.Google Scholar
Ji, X., Lee, K.T. & Nazar, L.F. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8, 500506.CrossRefGoogle ScholarPubMed
Kim, H., Lee, J.T., Magasinski, A., Zhao, K., Liu, Y. & Yushin, G. (2015). In situ TEM observation of electrochemical lithiation of sulfur Confined within inner cylindrical pores of carbon nanotubes. Adv Energy Mater. 5, 1501306.Google Scholar
Kourkoutis, L.F., Plitzko, J.M. & Baumeister, W. (2012). Electron microscopy of biological materials at the nanometer scale. Ann Rev Mater Res 42, 3358.Google Scholar
Ma, L., Hendrickson, K.E., Wei, S. & Archer, L.A. (2015). Nanomaterials: Science and applications in the lithium-sulfur battery. Nano Today 10, 315338.Google Scholar
Nash, D.B. (1987). Sulfur in vacuum: Sublimation effects on frozen melts, and applications to Io’s surface and torus. Icarus 72, 134.Google Scholar
Nguyen, K.X., Holtz, M.E. & Muller, D.A. (2013). AirSEM: Electron microscopy in air, without a specimen chamber. Microsc Microanal 19(S2), 428429.Google Scholar
Nguyen, K.X., Holtz, M.E., Richmond-Decker, J., Milstein, Y. & Muller, D.A. (2014). Spatial resolution of scanning electron microscopy without a vacuum chamber. Microsc Microanal 20(S3), 2627.Google Scholar
Nguyen, K.X., Holtz, M.E., Richmond-Decker, J. & Muller, D.A. (2016). Spatial resolution in scanning electron microscopy and scanning transmission electron microscopy, without a specimen vacuum chamber, Microsc Microanal, 22, 754767.CrossRefGoogle Scholar
Raiβ, C., Peppler, K., Janek, J. & Adelhelm, P. (2014). Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon 79, 245255.Google Scholar
Sahore, R., Estevez, L.P., Ramanujapuram, A., DiSalvo, F.J. & Giannelis, E.P. (2015). High-rate lithium–sulfur batteries enabled by hierarchical porous carbons synthesized via ice templation. J Power Sources 297, 188194.Google Scholar
Sahore, R., Levin, B.D.A., Pan, M., Muller, D.A., DiSalvo, F.J. & Giannelis, E.P. (2016). Design principles for optimum performance of porous carbons in lithium–sulfur batteries, Adv Energy Mater 6, 1600134.CrossRefGoogle Scholar
Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C. & Cui, Y. (2013). Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4, 1331.Google Scholar
Solomonov, I., Talmi-Frank, D., Milstein, Y., Addadi, S., Aloshin, A. & Sagi, I. (2014). Introduction of correlative light and airSEMTM microscopy imaging for tissue research under ambient conditions. Nat Sci Rep 4, 5987.Google Scholar
Song, J., Xu, T., Gordin, M.L., Zhu, P., Lv, D., Jiang, Y.B., Chen, Y., Duan, Y. & Wang, D. (2014). Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24, 12431250.Google Scholar
Vidavsky, N., Addadi, S., Mahamid, J., Shimoni, E., Ben-Ezra, D., Shpigel, M., Weiner, S. & Addadi, L. (2014). Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc Natl Acad Sci USA 111(1), 3944.Google Scholar
Wang, H., Yang, Y., Lian, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y. & Dai, H. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7), 26442647.Google Scholar
Werner, J.G., Johnson, S.S., Vijay, V. & Wiesner, U. (2015). Carbon–sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium–sulfur batteries. Chem Mater 27, 33493357.Google Scholar
Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., Nie, Z., Exarhos, G.J. & Liu, J. (2012). A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24, 11761181.Google Scholar
Xie, B., Shi, H., Liu, G., Zhou, Y., Wang, Y., Zhao, Y. & Wang, D. (2008). Preparation of surface porous microcapsules templated by self-assembly of nonionic surfactant micelles. Chem Mater 20(9), 30993104.Google Scholar
Zhao, Y., Wu, W., Li, J., Xu, Z. & Guan, L. (2014). Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv Mater 26, 51135118.Google Scholar
Zheng, G., Zhang, Q., Cha, J.J., Yang, Y., Li, W., Seh, Z.W. & Cui, Y. (2013). Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13(3), 12651270.Google Scholar
Zhou, W., Xiao, X., Cai, M. & Yang, L. (2014). Polydopamine-coated, nitrogen-doped, hollow carbon−sulfur double-layered core−shell structure for improving lithium−sulfur batteries. Nano Lett 14, 52505256.Google Scholar
Supplementary material: File

Levin supplementary material

Levin supplementary material 1

Download Levin supplementary material(File)
File 3.6 MB