Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T02:53:59.514Z Has data issue: false hasContentIssue false

Cellulose Films: Designing Template-Free Nanoporous Cellulose Films on Semiconducting Surfaces

Published online by Cambridge University Press:  20 June 2014

Ana P. Carapeto
Affiliation:
Centro de Química-Física Molecular and IN, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Ana Maria Ferraria*
Affiliation:
Centro de Química-Física Molecular and IN, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Pedro Brogueira
Affiliation:
ICEMS, Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Sami Boufi
Affiliation:
Laboratoire des Sciences des Matériaux et Environnement, University of Sfax, Route Soukra km 3.5, BP 11713000 Sfax, Tunisia
Ana Maria B. Do Rego
Affiliation:
Centro de Química-Física Molecular and IN, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
*
*Corresponding author.[email protected]
Get access

Abstract

In this work, we report the preparation of ultrathin submicro- and nanoporous cellulose films onto Si (100). The effect of different experimental conditions of preparation on the film surface morphology was studied, namely the role of the film casting method (spin- versus dip-coating), solvent (toluene or tetrahydrofuran), substrate pretreatment (hydrophilicity degree), and regeneration procedure with HCl vapors (two consecutive dips followed by regeneration or regeneration after each dip). The surface morphological structures presented in this work were never obtained before without the use of templates. A rather regular two-dimensional pore network was obtained onto the less hydrophilic Si substrate (contact angle≅68°), after two consecutive dips (with an intercalary rotation of 180º) in trimethylsilyl cellulose diluted in toluene and regeneration at the end. All the surfaces were characterized by atomic force microscopy.

Type
SPMicros Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boufi, S., Vilar, M.R., Parra, V., Ferraria, A.M. & Botelho do Rego, A.M. (2008). Grafting of porphyrins on cellulose nanometric films. Langmuir 24, 73097315.CrossRefGoogle ScholarPubMed
Cai, J., Kimura, S., Wada, M. & Kuga, S. (2009). Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10, 8794.Google Scholar
Chou, C.-M., Wei, T.-Y.W., Chen, J.-M.M., Chang, W.-T., Yu, C.-T.R. & Hsiao, V.K.S. (2011). Preparation of nanoporous polymer films for real-time viability monitoring of cells. J Nanomater 2011, 16.CrossRefGoogle Scholar
Ferraria, A.M., Boufi, S., Battaglini, N., Botelho do Rego, A.M. & Vilar, M.R. (2010). Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26(3), 19962001.CrossRefGoogle ScholarPubMed
Hall, D.B., Underhill, P. & Torkelson, J.M. (1998). Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38(12), 20392045.Google Scholar
Haynes, W.M. (2011) (Ed.). CRC Handbook of Chemistry and Physics, 94th ed. Boca Raton, FL, USA: Taylor & Francis (CRC Press).Google Scholar
Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J. & Baro, A.M. (2007). WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78, 18.CrossRefGoogle Scholar
Hu, K., Liu, P., Ye, S. & Zhang, S. (2009). Ultrasensitive electrochemical detection of DNA based on PbS nanoparticle tags and nanoporous gold electrode. Biosens Bioelectron 24, 31133119.Google Scholar
Kasai, W. & Kondo, T. (2004). Fabrication of honeycomb-patterned cellulose films. Macromol Biosci 4, 1721.Google Scholar
Kontturi, E., Thüne, P.C. & Niemantsverdriet, J.W. (2003). Novel method for preparing cellulose model surfaces by spin coating. Langmuir 19, 57355741.CrossRefGoogle Scholar
Kontturi, E., Thüne, P.C., Alexeev, A. & Niemantsverdriet, J.W. (2005 a). Introducing open films of nanosized cellulose—atomic force microscopy and quantification of morphology. Polymer 46(10), 33073317.Google Scholar
Kontturi, E., Thüne, P.C. & Niemantsverdriet, J.W. (2005 b). Trimethylsilylcellulose/polystyrene blends as a means to construct cellulose domains on cellulose. Macromolecules 38, 1071210720.CrossRefGoogle Scholar
Lee, J.Y., Yun, T.S., Santamarina, J.C. & Ruppel, C. (2007). Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochem Geophys Geosyst 8(6), 110.CrossRefGoogle Scholar
Lemay, S.G. (2009). Nanopore-based biosensors: The interface between ionics and electronics. ACS Nano 3, 775779.CrossRefGoogle ScholarPubMed
Martin, C.R. & Siwy, Z.S. (2007). Learning nature’s way: Biosensing with synthetic nanopores. Science 317, 331332.Google Scholar
Meyerhofer, D. (1978). Characteristics of resist films produced by spinning. J Appl Phys 49, 39933997.CrossRefGoogle Scholar
Mussi, V., Fanzio, P., Repetto, L., Firpo, G., Scaruffi, P., Stigliani, S., Tonini, G.P. & Valbusa, U. (2010). DNA-functionalized solid state nanopore for biosensing. Nanotechnology 21, 145102145106.Google Scholar
Parra, V., Vilar, M.R., Battaglini, N., Ferraria, A.M., Botelho do Rego, A.M., Boufi, S., Rodríguez-Méndez, M.L., Fonavs, E., Muzikante, I. & Bouvet, M. (2007). New hybrid films based on cellulose and hydroxygallium phthalocyanine. Synergetic effects in the structure and properties. Langmuir 23, 37123722.Google Scholar
Romero, V., Vázquez, M.I. & Benavente, J. (2013). Study of ionic and diffusive transport through a regenerated cellulose nanoporous membrane. J Membrane Sci 433, 152159.Google Scholar
Vilar, M.R., Boufi, S., Ferraria, A.M. & Botelho do Rego, A.M. (2007). Chemical modification of semiconductor surfaces by means of nanometric cellulose films. J Phys Chem C 111, 1279212803.Google Scholar