Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T14:15:18.879Z Has data issue: false hasContentIssue false

Cardiovascular Imaging Using Two-Photon Microscopy

Published online by Cambridge University Press:  06 November 2008

John A. Scherschel
Affiliation:
Department of Pediatrics, Division of Cardiology, Wells Center for Pediatric Research, 1044 West Walnut Street, Indianapolis, IN 46202, USA Department of Medicine, Division of Cardiology, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
Michael Rubart*
Affiliation:
Department of Pediatrics, Division of Cardiology, Wells Center for Pediatric Research, 1044 West Walnut Street, Indianapolis, IN 46202, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Two-photon excitation microscopy has become the standard technique for high resolution deep tissue and intravital imaging. It provides intrinsic three-dimensional resolution in combination with increased penetration depth compared to single-photon confocal microscopy. This article will describe the basic physical principles of two-photon excitation and will review its multiple applications to cardiovascular imaging, including second harmonic generation and fluorescence laser scanning microscopy. In particular, the capability and limitations of multiphoton microscopy to assess functional heterogeneity on a cellular scale deep within intact, Langendorff-perfused hearts are demonstrated. It will also discuss the use of two-photon excitation-induced release of caged compounds for the study of intracellular calcium signaling and intercellular dye transfer.

Type
Multiphoton Microscopy–Special Section
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ai, X. & Pogwizd, S.M. (2005). Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96, 5463.CrossRefGoogle ScholarPubMed
Aistrup, G.L., Kelly, J.E., Kapur, S., Kowalczyk, M., Sysman-Wolpin, I., Kadish, A.H. & Wasserstrom, J.A. (2006). Pacing-induced heterogeneities in intracellular Ca2+ signaling, cardiac alternans, and ventricular arrhythmias in intact rat heart. Circ Res 99, E65E73.CrossRefGoogle ScholarPubMed
Akar, F.G., Spragg, D.D., Tunin, R.S., Kass, D.A. & Tomaselli, G.A. (2004). Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 95, 717725.CrossRefGoogle ScholarPubMed
Baker, L.C., London, B., Choi, B., Koren, G. & Salama, G. (2000). Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Circ Res 86, 396407.CrossRefGoogle ScholarPubMed
Brown, E.B., Shear, J.B., Adams, S.R., Tsien, R.Y. & Webb, W.W. (1999). Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 76, 489499.Google Scholar
Bullen, A. & Saggau, P. (1999). High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophys J 76, 22722287.CrossRefGoogle ScholarPubMed
Campagnola, P.J., Clark, H.A., Mohler, W.A., Lewis, A. & Loew, L.M. (2001). Second-harmonic imaging microscopy of living cells. J Biomed Opt 6, 277286.Google Scholar
Cannell, M.B., Cheng, H. & Lederer, W.J. (1994). Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys J 67, 19421956.Google Scholar
Centonze, V.E. & White, J.G. (1998). Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75, 20152024.Google Scholar
Cerrone, M., Noujaim, S.F., Tolkacheva, E.G., Talkachou, A., O'Connell, R., Berenfeld, O., Anumonwo, J., Pandit, S.V., Vikstrom, K., Napolitano, C., Priori, S.G. & Jalife, J. (2007). Arrhythmogenic mechanisms in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res 101, 10391048.Google Scholar
Chilton, L., Giles, W.R. & Smith, G.L. (2007). Evidence of intercellular coupling between co-cultured adult rabbit ventricular myocytes and myofibroblasts. J Physiol 583, 225236.Google Scholar
Cordeiro, J.M., Spitzer, K.W., Giles, W.R., Ershler, P.E., Cannell, M.B. & Bridge, J.H. (2001). Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J Physiol 531(Pt 2), 301314.CrossRefGoogle ScholarPubMed
Dakin, K. & Li, W.H. (2006). Infrared-LAMP: Two-photon uncaging and imaging of gap junctional communication in three dimensions. Nat Methods 3, 959.Google Scholar
Danik, S.B., Liu, F., Zhang, J., Suk, H.J., Morley, G.E., Fishman, G.I. & Gutstein, D.E. (2004). Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res 95, 10351041.Google Scholar
DelPrincipe, F., Egger, M. & Niggli, E. (1999). Calcium signalling in cardiac muscle: Refractoriness revealed by coherent activation. Nat Cell Biol 1, 323329.CrossRefGoogle ScholarPubMed
Dombeck, D.A., Sacconi, L., Blanchard-Desce, M. & Webb, W.W. (2005). Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. J Neurophysiol 94, 36283636.CrossRefGoogle ScholarPubMed
Dunn, K.W., Sandoval, R.M., Kelly, K.J., Dagher, P.C., Tanner, G.A., Atkinson, S.J., Bacallao, R.L. & Molitoris, B.A. (2002). Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283, C905C916.CrossRefGoogle ScholarPubMed
Eckert, R. (2006). Gap-junctional single-channel permeability for fluorescent tracers in mammalian cell cultures. Biophys J 91, 565579.Google Scholar
Efimov, I.R., Nikolski, V.P. & Salama, G. (2004). Optical imaging of the heart. Circ Res 95, 2133.Google Scholar
Fedorov, V.V., Lozinsky, I.T., Sosunov, E.A., Anyukhovsky, E.P., Rosen, M.R., Balke, W. & Efimov, I.R. (2007). Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4, 619626.CrossRefGoogle ScholarPubMed
Fisher, J.A., Salzberg, B.M. & Yodh, A.G. (2005). Near infrared two-photon excitation cross-sections of voltage-sensitive dyes. J Neurosci Methods 148, 94102.CrossRefGoogle ScholarPubMed
Gauderon, R., Lukins, P.B. & Sheppard, C.J. (1999). Effect of a confocal pinhole in two-photon microscopy. Microsc Res Tech 47, 210214.Google Scholar
Gaudesius, G., Miragoli, M., Thomas, S.P. & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93, 421428.Google Scholar
Hadley, R.W. & Lederer, W.J. (1991). Ca2+ and voltage inactivate Ca2+ channels in guinea-pig ventricular myocytes through independent mechanisms. J Physiol 444, 257268.Google Scholar
Heinzel, F.R., Bito, V., Biesmans, L., Wu, M., Detre, E., von Wegner, F., Claus, P., Dymarkowski, S., Maes, F., Bogaert, J., Rademakers, F., D'Hooge, J. & Sipido, K. (2007). Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res 102, 338346.CrossRefGoogle ScholarPubMed
Helmchen, F. & Denk, W. (2005). Deep tissue two-photon microscopy. Nat Methods 2, 932940.CrossRefGoogle ScholarPubMed
Hopt, A. & Neher, E. (2002). Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80, 20292036.Google Scholar
Ito, K., Yan, X., Tajima, M., Su, Z., Barry, W.H. & Lorell, B.H. (2000). Contractile reserve and intracellular calcium regulation in mouse ventricular myocytes from normal and hypertrophied failing hearts. Circ Res 87, 588595.Google Scholar
Jacobs, M.D., Soeller, C., Sisley, A.M., Cannell, M.B. & Donaldson, P.J. (2004). Gap junction processing and redistribution revealed by quantitative optical measurements of connexin46 epitopes in the lens. Invest Ophthalmol Vis Sci 45, 191199.Google Scholar
Ji, G., Feldman, M., Doran, R., Zipfel, W. & Kotlikoff, M.I. (2006). Ca2+-induced Ca2+ release through localized Ca2+ uncaging in smooth muscle. J Gen Physiol 127, 225235.Google Scholar
Kleinfeld, D., Mitra, P.P., Helmchen, F. & Denk, W. (1998). Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad of Sci USA 95, 1574115746.CrossRefGoogle ScholarPubMed
Koester, H.J., Baur, D., Uhl, R. & Hell, S.W. (1999). Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage. Biophys J 77, 22262236.CrossRefGoogle ScholarPubMed
Kolega, J. (2004). Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochem Biophys Res Commun 320, 10201025.Google Scholar
Kuhn, B., Fromherz, P. & Denk, W. (2004). High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87, 631639.CrossRefGoogle ScholarPubMed
Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W. & Webb, W.W. (2003). Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 14341436.Google Scholar
Matsumoto-Ida, M., Akao, M., Takeda, T., Kato, M. & Kita, T. (2006). Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation 114, 14971503.CrossRefGoogle ScholarPubMed
McMullen, J.D., Dombeck, D. & Zipfel, W.R. (2006). Ratiometric in vivo two-photon calcium measurements using Fura-2. Biophys J 90 [abstract], B179.Google Scholar
Millard, A.C., Jin, L., Wei, M.D., Wuskell, J.P., Lewis, A. & Loew, L.M. (2004). Sensitivity of second harmonic generation from styryl dyes to transmembrane potential. Biophys J 86, 11691176.Google Scholar
Miragoli, M., Gaudesius, G. & Rohr, S. (2006). Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98, 801810.Google Scholar
Mulligan, S.J. & MacVicar, B.A. (2004). Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431, 195199.Google Scholar
Nelson, M.T., Cheng, H., Rubart, M., Santana, L.F., Bonev, A.D., Knot, H.J. & Lederer, W.J. (1995). Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633637.CrossRefGoogle ScholarPubMed
Niesner, R., Andresen, V., Neumann, J., Spiecker, H. & Gunzer, M. (2007). The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J 93, 25192529.Google Scholar
Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. (2001). Two-photon microscopy in brain tissue: Parameters influencing the imaging depth. J Neurosci Methods 111, 2937.Google Scholar
Parthasarathi, K., Ichimura, H., Monma, E., Lindert, J., Quadri, S., Issekutz, A. & Bhattacharya, A.J. (2006). Connexin 43 mediates spread of Ca2+-dependent proinflammatory responses in lung capillaries. J Clin Invest 116, 21932200.CrossRefGoogle ScholarPubMed
Patterson, G.H. & Piston, D.W. (2000). Photobleaching in two-photon excitation microscopy. Biophys J 78, 21592162.CrossRefGoogle ScholarPubMed
Potter, S.M., Wang, C.M., Garrity, P.A. & Fraser, S.E. (1996). Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy. Gene 173, 2531.CrossRefGoogle ScholarPubMed
Rubart, M. (2004). Two-photon microscopy of cells and tissue. Circ Res 95, 11541166.CrossRefGoogle ScholarPubMed
Rubart, M., Pasumarthi, K.B., Nakajima, H., Soonpaa, M.H., Nakajima, H.O. & Field, L.J. (2003a). Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circ Res 92, 12171224.Google Scholar
Rubart, M., Soonpaa, M.H., Nakajima, H. & Field, L.J. (2004). Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest 114, 775783.Google Scholar
Rubart, M., Wang, E., Dunn, K.W. & Field, L.J. (2003b). Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts. Am J Physiol Cell Physiol 284, C1654C1668.CrossRefGoogle ScholarPubMed
Rueckel, M., Mack-Bucher, J.A. & Denk, W. (2006). Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci USA 103, 1713717142.Google Scholar
Sakamoto, T., Limouze, J., Combs, C.A., Straight, A.F. & Sellers, J.R. (2005). Blebbistatin, a myosin II inhibitor, is photoinactivated by blue light. Biochemistry 44, 584588.Google Scholar
Salama, G. & Morad, M. (1976). Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science 191, 485487.CrossRefGoogle ScholarPubMed
Soeller, C. & Cannell, M.B. (1999). Two-photon microscopy: Imaging in scattering samples and three-dimensionally resolved flash photolysis. Microsc Res Tech 47, 182195.Google Scholar
Wier, W.G., ter Keurs, H.E., Marban, E., Gao, W.D. & Balke, C.W. (1997). Ca2+ ‘sparks’ and waves in intact ventricular muscle resolved by confocal imaging. Circ Res 81, 462469.Google Scholar
Williams, R.M., Zipfel, W.R. & Webb, W.W. (2005). Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88, 13771386.CrossRefGoogle ScholarPubMed
Wu, X., Zhang, T., Bossuyt, J., Li, X., McKinsey, T.A., Dedman, J.R., Olson, E.N., Chen, J., Brown, J.H. & Bers, D.M. (2006). Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116, 675682.Google Scholar
Xu, C. & Webb, W.W. (1996a). Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13, 481491.Google Scholar
Xu, C., Zipfel, W.R., Shear, J.B., Williams, R.M. & Webb, W.W. (1996b). Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93, 1076310768.CrossRefGoogle ScholarPubMed
Zipfel, W.R., Williams, R.M., Christie, R., Nikitin, A.Y., Hyman, B.T. & Webb, W.W. (2003a). Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100, 70757080.Google Scholar
Zipfel, W.R., Williams, R.M. & Webb, W.W. (2003b). Nonlinear magic: Multiphoton microscopy in the biosciences. Nat Biotechnol 21, 13691377.Google Scholar
Zoumi, A., Lu, X., Kassab, G.S. & Tromberg, B.J. (2004). Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 87, 27782786.Google Scholar
Zoumi, A., Yeh, A. & Tromberg, B.J. (2002). Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99, 1101411019.Google Scholar