Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T15:12:17.904Z Has data issue: false hasContentIssue false

Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  02 May 2012

Katherine L. Jungjohann*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
James E. Evans
Affiliation:
Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
Jeffery A. Aguiar
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave., Davis, CA 95616, USA Department of Physical and Life Sciences, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
Ilke Arslan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
Nigel D. Browning
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave., Davis, CA 95616, USA Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.

Type
Techniques Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J. & Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4, 366377.CrossRefGoogle ScholarPubMed
Bergmann, U., Wernet, Ph., Glatzel, P., Cavalleri, M., Pettersson, L.G.M., Nilsson, A. & Cramer, S.P. (2002). X-ray Raman spectroscopy at the oxygen K edge of water and ice: Implications on local structure models. Phys Rev B 66, 092107.CrossRefGoogle Scholar
Browning, N.D., Chisholm, M.F. & Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.CrossRefGoogle Scholar
Brydson, R., Sauer, H. & Engel, W. (1992). Electron energy loss near-edge structure as an analytical tool—The study of minerals. In Transmission Electron Energy Loss Spectrometry in Materials Science, Disko, M.M., Ahn, C.C. & Fultz, B. (Eds.), pp. 131154. Warrendale, PA: The Minerals, Metals and Materials Society.Google Scholar
Chen, K.L., Smith, B.A., Ball, W.P. & Fairbrother, D.H. (2010). Assessing the colloidal properties of engineered nanoparticles in water: Case studies from fullerene C60 nanoparticles and carbon nanotubes. Environ Chem 7, 1027.Google Scholar
Coleman, J.N., Lotya, M., O'Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grievesson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D. & Nicolosi, V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568571.Google Scholar
Colvin, V.L. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotech 21, 11661170.Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106, 21592164.Google Scholar
Egerton, R.F. (1996). Electron Energy Loss Spectroscopy. New York: Plenum Press.CrossRefGoogle Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.Google Scholar
Grand, D., Bernas, A. & Amouyal, E. (1979). Photoionization of aqueous indole; Conduction band edge and energy gap in liquid water. Chem Phys 44, 7379.CrossRefGoogle Scholar
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93114.CrossRefGoogle Scholar
Henderson, M. (1996). Structural sensitivity in the dissociation of water on TiO2, single crystal surfaces. Langmuir 12, 50935098.Google Scholar
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys Rev B 77, 104102.CrossRefGoogle Scholar
James, E.M. & Browning, N.D. (1999). Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125139.CrossRefGoogle Scholar
Jiang, N. & Spence, J.C.H. (2011). In situ EELS study of dehydration of Al(OH)3 by electron beam irradiation. Ultramicroscopy 111, 860864.Google Scholar
Kang, D. (2002). Molecular orbital analysis of water activation on TiO2 (110) surface. J Korean Chem Soc 46, 179186.Google Scholar
Kim, W.B., Voitl, T., Rodriguez-Rivera, G.J. & Dumesic, J.A. (2004). Powering fuel cells with Co via aqueous polyoxometalates and gold catalysts. Science 305, 12801283.CrossRefGoogle ScholarPubMed
Kroll, P. (2001). Structure and reactivity of amorphous silicon nitride investigated with density-functional methods. J Non-Cryst Sol 293295, 238243.Google Scholar
LaGrange, T., Armstrong, M.R., Boyden, K., Brown, C.G., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., Pyke, B.J., Reed, B.W., Shirk, M.D., Shuttlesworth, R.M., Stuart, B.C. & Torralva, B.R. (2006). Single-shot dynamic transmission electron microscopy. Appl Phys Lett 89, 044105.Google Scholar
Liu, K.L., Wu, C.C., Huang, Y.J., Pang, H.L., Chang, H.Y., Chang, P., Hsu, L. & Yew, T.R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921.CrossRefGoogle ScholarPubMed
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Elec Micro Tech 8, 193200.Google Scholar
Manocha, A.S. & Park, R.L. (1977). Flotation related ESCA studies on PbS surfaces. Appl Surf Sci 1, 129141.CrossRefGoogle Scholar
Martin, J.M., Mansot, J.L. & Hallouis, M. (1989). Energy filtered electron microscopy (EFEM) of overbased reverse micelles. Ultramicroscopy 30, 321328.Google Scholar
Marton, L. (1935). La microscopie electronique des objets biologiques. Bull Cl Sci Acad R Belg 21, 553564.Google Scholar
Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. & Timp, G. (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758761.CrossRefGoogle Scholar
Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V. & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8, 543557.CrossRefGoogle ScholarPubMed
Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., Yang, H. & A Report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005). Particle and fibre toxicology. Part Fibre Toxicol 2, 8.Google Scholar
Ring, E.A. & de Jonge, N. (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal 16, 622629.Google Scholar
Stefanovich, E. & Truong, T. (1999). Ab initio study of water adsorption on TiO2 (110): Molecular adsorption versus dissociative chemisorption. Chem Phys Lett 299, 623629.Google Scholar
Tao, F. & Salmeron, M. (2011). In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171174.Google Scholar
Walls, M.G. & Howie, A. (1989). Dielectric theory of localised valence energy loss spectroscopy. Ultramicroscopy 28, 4042.Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.Google Scholar
Zheng, H., Claridge, S.A., Minor, A.M., Alivisatos, A.P. & Dahmen, U. (2009a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9, 24602465.Google Scholar
Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009b). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.CrossRefGoogle ScholarPubMed