Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T13:25:18.207Z Has data issue: false hasContentIssue false

Atomic-Scale Analytical Tomography

Published online by Cambridge University Press:  23 February 2017

Thomas F. Kelly*
Affiliation:
CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI53711, USA
*
*Corresponding author. [email protected]
Get access

Abstract

The concept of atomic-scale tomography has been proposed in the past decade as a technique that could deliver the position of all atoms with high precision and their elemental (isotopic) identity. The technique was never intended to be limited to merely structural information and there is clearly a rich array of additional analytical information that can be brought to bear on such tomographs. In this paper, some of these types of information are considered and the implications are explored. The fuller realm of this analytical and structural information may be called atomic-scale analytical tomography.

Type
Instrumentation and Software
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is an outgrowth of a talk presented at a Workshop on the Future Scientific Direction of Electron Microscopy held at Forschungszentrum Jülich on July 13–15, 2016.

References

Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A. & Bartelt, N.C. (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.Google Scholar
Bachhav, M., Danoix, F., Hannoyer, B., Bassat, J.M. & Danoix, R. (2013). Investigation of O-18 enriched hematite (α-Fe2O3) by laser assisted atom probe tomography. Int J Mass Spectrom 335, 5760.Google Scholar
Bachhav, M., Danoix, R., Danoix, F., Hannoyer, B., Ogale, S. & Vurpillot, F. (2011). Investigation of wustite (Fe1-xO) by femtosecond laser assisted atom probe tomography. Ultramicroscopy 111, 584588.Google Scholar
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.Google Scholar
Beinke, D., Oberdorfer, C. & Schmitz, G. (2016). Towards an accurate volume reconstruction in atom probe tomography. Ultramicroscopy 165, 3441.Google Scholar
Beleggia, M., Kasama, T., Larson, D.J., Kelly, T.F., Dunin-Borkowski, R.E. & Pozzi, G. (2014). Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle. J Appl Phys 116, 24305.Google Scholar
Bell, D.C., Mankin, M., Day, R.W. & Erdman, N. (2014). Successful application of Low Voltage Electron Microscopy to practical materials problems. Ultramicroscopy 145, 5665.Google Scholar
Binev, P., Dahmen, W., DeVore, R., Lamby, P., Savu, D. & Sharpley, R. (2012). Compressed sensing and electron microscopy. In Modeling Nanoscale Imaging in Electron Microscopy, Nanostructure Science and Technology , Vogt, T., Dahmen, W. & Binev, P. (Eds.), pp. 73126. New York: Springer.CrossRefGoogle Scholar
Chen, Y., Rice, K.P., Prosa, T.J., Marquis, E.A. & Reed, R.C. (2015). Integrated APT/t-EBSD for grain boundary analysis of thermally grown oxide on a Ni-based superalloy. Microsc Microanal 21, 687688.Google Scholar
Dekkers, N.H. & Lang, H.D. (1974). Differential phase-contrast in a STEM. Optik 41, 452456.Google Scholar
Du, S., Burgess, T., Loi, S.T., Gault, B., Gao, Q., Bao, P., Li, L., Cui, X., Kong Yeoh, W., Hoe Tan, H., Jagadish, C., Ringer, S.P. & Zheng, R. (2013). Full tip imaging in atom probe tomography. Ultramicroscopy 124, 96101.Google Scholar
Dunin-Borkowski, R.E., Kasama, T., McCartney, M.R. & Smith, D.J. (2007). Electron Holography. In Science of Microscopy, Hawkes, P.W. & Spence, J.C.H. (Eds.), pp. 11411195. New York: Springer.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012 a). Atom Probe Microscopy. New York: Springer.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012 b). Atom probe crystallography. Mater Today 15, 378386.CrossRefGoogle Scholar
Gault, B., Saxey, D.W., Ashton, M.W., Sinnott, S.B., Chiaramonti, A.N., Moody, M.P. & Schreiber, D.K. (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 33031.CrossRefGoogle Scholar
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13, 437447.Google Scholar
Gipson, G.S. & Eaton, H.C. (1980). The electric field distribution in the field ion microscope as a function of specimen shank. J Appl Phys 51, 55375539.Google Scholar
Gorman, B.P., Diercks, D., Salmon, N., Stach, E., Amador, G. & Hartfield, C. (2008 a). Hardware and techniques for cross-correlative TEM and atom probe analysis. Microsc Today 16, 4247.Google Scholar
Gorman, B.P., Puthucode, A., Diercks, D.R. & Kaufman, M.J. (2008 b). Cross-correlative TEM and atom probe analysis of partial crystallisation in NiNbSn metallic glasses. Mater Sci Technol 24, 682688.Google Scholar
Gorman, B.P., Shepard, J.D., Kirchhofer, R., Olson, J.D. & Kelly, T.F. (2011). Development of atom probe tomography with in-situ STEM imaging and diffraction. Microsc Microanal 17, 710711.Google Scholar
Guo, W., Sneed, B.T., Zhou, L., Tang, W., Kramer, M.J., Cullen, D.A. & Poplawsky, J.D. (2016). Correlative energy-dispersive X-ray spectroscopic tomography and atom probe tomography of the phase separation in an Alnico 8 Alloy. Microscopy and Microanalysis 22, 12511260.Google Scholar
Haley, D., Moody, M.P. & Smith, G.D.W. (2013). Level set methods for modelling field evaporation in atom probe. Microsc Microanal 19, 17091717.Google Scholar
Haley, D., Petersen, T., Ringer, S.P. & Smith, G.D.W. (2011). Atom probe trajectory mapping using experimental tip shape measurements. J Microsc 244, 170180.CrossRefGoogle ScholarPubMed
Herbig, M., Choi, P. & Raabe, D. (2013). Combining structural and chemical information on the nanometer scale by correlative TEM and APT. Microsc Microanal 19, 948949.Google Scholar
Herbig, M., Choi, P. & Raabe, D. (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, 3239.Google Scholar
Hren, J.J. (1979). Barriers to AEM: Contamination and etching. In Introduction to Analytical Electron Microscopy, Hren, J.J., Goldstein, J.I. & Joy, D.C. (Eds.), pp. 481505. New York: Plenum Press.Google Scholar
Irwin, K.D. (2006). Seeing with superconductors. Scientific American, November 1, 2006, 86--94.Google Scholar
Keast, V.J., Scott, A.J., Brydson, R., Williams, D.B. & Bruley, J. (2001). Electron energy-loss near-edge structure – A tool for the investigation of electronic structure on the nanometre scale. J Microsc 203, 135175.Google Scholar
Kelly, T.F., Miller, M.K., Rajan, K. & Ringer, S.P. (2013). Atomic-scale tomography: A 2020 vision. Microsc Microanal 19, 652664.Google Scholar
Kelly, T.F., Miller, M.K., Rajan, K., Ringer, S.P., Borisevich, A.Y., Dellby, N. & Krivanek, O.L. (2011). Toward atomic-scale tomography: The ATOM project. Microsc Microanal 17(Suppl 2), 708709.Google Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.Google Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.Google Scholar
Leary, R., Saghi, Z., Midgley, P.A. & Holland, D.J. (2013). Compressed sensing electron tomography. Ultramicroscopy 131, 7091.Google Scholar
Lee, Z., Rose, H., Lehtinen, O., Biskupek, J. & Kaiser, U. (2014). Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images. Ultramicroscopy 145, 312.Google Scholar
Lefebvre, W., Hernandez-Maldonado, D., Moyon, F., Cuvilly, F., Vaudolon, C., Shinde, D. & Vurpillot, F. (2015). HAADF–STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy. Ultramicroscopy 159, 403412.CrossRefGoogle ScholarPubMed
Loberg, B. & Norden, H. (1968). Observations of the field-evaporation end form of tungsten. Arkiv Fysik 39, 383395.Google Scholar
Lubk, A. & Zweck, J. (2015). Differential phase contrast: An integral perspective. Phys Rev A 91, 23805.Google Scholar
MacLaren, I., Wang, L., McGrouther, D., Craven, A.J., McVitie, S., Schierholz, R., Kovács, A., Barthel, J. & Dunin-Borkowski, R.E. (2015). On the origin of differential phase contrast at a locally charged and globally charge-compensated domain boundary in a polar-ordered material. Ultramicroscopy 154, 5763.CrossRefGoogle Scholar
Miller, M.K. & Forbes, R.G. (2014). Atom-Probe Tomography: The Local Electrode Atom Probe, 1st ed. New York: Springer.Google Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.Google Scholar
Moody, M.P., Gault, B., Stephenson, L.T., Marceau, R.K.W., Powles, R.C., Ceguerra, A.V., Breen, A.J. & Ringer, S.P. (2011). Lattice rectification in atom probe tomography: Toward true three-dimensional atomic microscopy. Microsc Microanal 17, 226239.Google Scholar
Petersen, T.C. & Ringer, S.P. (2009). Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology. J Appl Phys 105, 103518.Google Scholar
Petersen, T.C. & Ringer, S.P. (2010). An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces. Comput Phys Commun 181, 676682.Google Scholar
Prosa, T.J., Geiser, B.P., Lawrence, D., Olson, D. & Larson, D.J. (2014). Developing detection efficiency standards for atom probe tomography. SPIE Proc 9173, 917307.Google Scholar
Prosa, T.J. & Larson, D.J. (2017). Modern focused-ion-beam-based site-specific specimen preparation for atom probe tomography. Microscopy and Microanalysis, 23, doi:10.1017/S1431927616012642.Google Scholar
Rice, K.P., Chen, Y., Prosa, T.J. & Larson, D.J. (2016). Implementing transmission electron backscatter diffraction for atom probe tomography. Microsc Microanal 22, 583588.Google Scholar
Rice, K.P., Keller, R.R. & Stoykovich, M.P. (2014). Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope. J Microsc 254, 129136.Google Scholar
Rose, H. (1976). Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251267.Google Scholar
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage TEM. Optik 85, 1924.Google Scholar
Saghi, Z., Divitini, G., Winter, B., Leary, R., Spiecker, E., Ducati, C. & Midgley, P.A. (2016). Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose. Ultramicroscopy 160, 230238.Google Scholar
Sakaguchi, N., Tanda, L. & Kunisada, Y. (2016). Improving the measurement of dielectric function by TEM-EELS: Avoiding the retardation effect. Microscopy 65, 415421.Google Scholar
Saxey, D.W. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.Google Scholar
Suttle, J.R., Kelly, T.F. & Mcdermott, R.F. (2016). A superconducting ion detection scheme for atom probe tomography, Atom Probe Tomography and Microscopy 2016: from Science to Industry, Gyeongju, Korea.Google Scholar
Sutton, A.P. & Balluffi, R.W. (1995). Interfaces in Crystalline Materials. Oxford; New York: Clarendon Press; Oxford University Press.Google Scholar
Tate, M.W., Purohit, P., Chamberlain, D., Nguyen, K.X., Hovden, R., Chang, C.S., Deb, P., Turgut, E., Heron, J.T., Schlom, D.G., Ralph, D.C., Fuchs, G.D., Shanks, K.S., Philipp, H.T., Muller, D.A. & Gruner, S.M. (2016). High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc Microanal 22, 237249.Google Scholar
Thompson, K., Lawrence, D.J., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In-situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Vurpillot, F. (2016). Private communication. Unpublished research.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (1999). The shape of field emitters and the ion trajectories in three-dimensional atom probes. J Microsc 196, 332336.Google Scholar
Wall, J.S. (1980). Contamination in the STEM at ultra high vacuum. Scan Electron Microsc 1980, 99106.Google Scholar
Walls, J.M. & Southworth, H.N. (1979). Magnification in the field-ion microscope. J Phys D Appl Phys 12, 657667.Google Scholar