Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T06:37:23.443Z Has data issue: false hasContentIssue false

Atomic Force Spectroscopy on Poly(o-ethoxyaniline) Nanostructured Films: Sensing Nonspecific Interactions

Published online by Cambridge University Press:  11 April 2007

F.L. Leite
Affiliation:
Embrapa Instrumentação Agropecuária, Rua XV de Novembro 1452, CP 741, 13560-970, São Carlos, SP, Brazil Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), CP 369, 13560-970, São Carlos, SP, Brazil
C.E. Borato
Affiliation:
Embrapa Instrumentação Agropecuária, Rua XV de Novembro 1452, CP 741, 13560-970, São Carlos, SP, Brazil Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), CP 369, 13560-970, São Carlos, SP, Brazil
W.T.L. da Silva
Affiliation:
Embrapa Instrumentação Agropecuária, Rua XV de Novembro 1452, CP 741, 13560-970, São Carlos, SP, Brazil
P.S.P. Herrmann
Affiliation:
Embrapa Instrumentação Agropecuária, Rua XV de Novembro 1452, CP 741, 13560-970, São Carlos, SP, Brazil
O.N. Oliveira
Affiliation:
Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), CP 369, 13560-970, São Carlos, SP, Brazil
L.H.C. Mattoso
Affiliation:
Embrapa Instrumentação Agropecuária, Rua XV de Novembro 1452, CP 741, 13560-970, São Carlos, SP, Brazil
Get access

Abstract

Atomic force spectroscopy (AFS) was used to measure interaction forces between the tip and nanostructured layers of poly(o-ethoxyaniline) (POEA) in pure water and CuSO4 solutions. When the tip approach and retraction were carried out at low speeds, POEA chains could be physisorbed onto the Si3N4 tip via nonspecific interactions. We conjecture that while detaching, POEA chains were stretched and the estimated chain lengths were consistent with the expected values from the measured POEA molecular weight. The effects from POEA doping could be investigated directly by performing AFS measurements in a liquid cell, with the POEA film exposed to liquids of distinct pH values. For pH ≥ 6.0, the force curves normally displayed an attractive region for POEA, but at lower pH values—where POEA is protonated—the repulsive double-layer forces dominated. Measurements in the liquid cell could be further exploited to investigate how the film morphology and the force curve are affected when impurities are deliberately introduced in the liquid. The shape of the force curves and the film morphology depended on the concentration of heavy metal in the liquid cell. AFS may therefore be used to study the interaction between film and analyte, with important implications for the understanding of mechanisms governing the sensing ability of taste sensors.

Type
MATERIALS APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aimé, J.P., Elkaakour, Z., Odin, C., Bouhacina, T., Michel, D., Curély, J. & Dautant, A. (1994). Comments on the use of the force mode in atomic-force microscopy for polymer-films. J Appl Phys 76, 754762.Google Scholar
Azzaroni, O., Schilardi, P.L., Salvarezza, R.C., Gago, R. & Vazquez, L. (2003). Direct molding of nanopatterned polymeric films: Resolution and errors. Appl Phys Lett 82, 457459.Google Scholar
Beach, E.R., Tormoen, G.W. & Drelich, J. (2002). Pull-off forces measured between hexadecanethiol self-assembled monolayers in air using an atomic force microscope: Analysis of surface free energy. J Adhesion Sci Technol 16, 845868.Google Scholar
Bergstrom, L. & Bostedt, E. (1990). Surface-chemistry of silicon-nitride powders—Electrokinetic behavior and esca studies. Colloids Surf A 49, 183197.Google Scholar
Biggs, S. & Proud, A.D. (1997). Forces between silica surfaces in aqueous solutions of a weak polyelectrolyte. Langmuir 13, 72027210.Google Scholar
Binnig, G., Quate, C.F. & Gerber, C. (1986). Atomic force microscopy. Phys Rev Lett 56, 930933.Google Scholar
Bliznyuk, V.N., Assender, H.E. & Briggs, G.A.D. (2002). Surface glass transition temperature of amorphous polymers. A new insight with SFM. Macromolecules 35, 66136622.Google Scholar
Borato, C.E., Leite, F.L., Oliveira, O.N., Jr. & Mattoso, L.H.C. (2006). Efficient taste sensors made of bare metal electrodes. Sensor Lett 4, 155159.Google Scholar
Burnham, N.A., Dominguez, D.D., Mowery, R.L. & Colton, R.J. (1990). Probing the surface forces of monolayer films with an atomic-force microscope. Phys Rev Lett 64, 19311934.Google Scholar
Butt, H.-J. (1991a). Measuring electrostatic, van der Waals, and hydration forces in electrolyte-solutions with an atomic force microscope. Biophys J 60, 14381444.Google Scholar
Butt, H.-J. (1991b). Electrostatic interaction in atomic force microscopy. Biophys J 60, 777785.Google Scholar
Butt, H.-J., Cappella, B. & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 59, 1152.Google Scholar
Butt, H.-J., Farshchi-Tabrizi, M. & Kappl, M. (2006). Using capillary forces to determine the geometry of nanocontacts. J Appl Phys 100, 024312.Google Scholar
Butt, H.-J., Jaschke, M. & Ducker, W. (1995). Measuring surface forces in aqueous-electrolyte solution with the atomic-force microscope. Bioelectrochem Bioenerg 38, 191201.Google Scholar
Cappella, B. & Dietler, G. (1999). Force-distance curves by atomic force microscopy. Surf Sci Rep 34, 1104.Google Scholar
Cappella, B., Sturm, H. & Schulz, E. (2002). Stiffness and adhesion characterization of nanolithographed poly(methyl methacrylate) by menas of force-displacement curves. J Adhes Sci Tech 16, 921933.Google Scholar
Churaev, N.V. & Derjaguin, B.V. (1985). Inclusion of structural forces in the theory of stability of colloids and films. J Coll Interface Sci 103, 542553.Google Scholar
Da Silva, W.T.L., Thobie-Gautier, C., Rezende, M.O.O. & El Murr, N. (2002). Electrochemical behavior of Cu(II) on carbon paste electrode modified by humic acid, cyclic voltammetry study. Electroanalysis 14, 7177.Google Scholar
Decher, G. (1997). Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 12321237.Google Scholar
Derjaguin, B.V. & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim 14, 633662.Google Scholar
Drelich, J., Tormoen, G.W. & Beach, E.R. (2004). Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. J Coll Interface Sci 280, 484497.Google Scholar
Drummond, C.J. & Senden, T.J. (1994). Examination of the geometry of long-range tip sample interaction in atomic-force microscopy. Colloids Surf A 87, 217234.Google Scholar
Dufrene, Y.F., Boonaert, C.J.P., Van der Mei, H.C., Busscher, H.J. & Rouxhet, P.G. (2001). Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. Ultramicroscopy 86, 113120.Google Scholar
Ferreira, M., Riul, A., Jr., Wohnrath, K., Fonseca, J.F., Oliveira, O.N., Jr. & Mattoso, L.H.C. (2003). High-performance taste sensor made from Langmuir–Blodgett films of conducting polymers and a ruthenium complex. Anal Chem 75, 953955.Google Scholar
Florin, E.-L., Rief, M., Lehmann, H., Ludwig, M., Dornmair, C., Moy, V.T. & Gaub, H.E. (1995). Sensing specific molecular interactions with the atomic force microscope. Biosen Bioelectron 10, 895901.Google Scholar
Frommer, J.E. (1996). Probe microscopy of organics, an update. Thin Solid Films 273, 112115.Google Scholar
Gimzewski, J.K. (1999). Nanoscale science of single molecules using local probes. Science 283, 16831688.Google Scholar
Guffond, M.C., William, D.R.M. & Sevick, E.M.R. (1997). End-tethered polymer chains under AFM tips: Compression and escape in theta solvents. Langmuir 13, 56915696.Google Scholar
Hoh, J.H., Lal, R., John, S.A., Revel, J.-P. & Arnsdorf, M.F. (1991). Atomic force microscopy and dissection of gap-junctions. Science 253, 14051408.Google Scholar
Hudson, J.E. & Abruña, H.D. (1996). Electrochemically controlled adhesion in atomic force spectroscopy. J Am Chem Soc 118, 63036304.Google Scholar
Israelachvili, J. (1992). Intermolecular & Surface Forces, 2nd ed. London: Academic Press.
Kokkoli, E. & Zukoski, C.F. (1999). Effect of solvents on interactions between hydrophobic self-assembled monolayer. J Coll Interface Sci 209, 6065.Google Scholar
Leckband, D. & Israelachvili, J. (2001). Intermolecular forces in biology. Q Rev Biophys 34, 105267.Google Scholar
Leite, F.L., Borato, C.E., Oliveira, O.N., Jr., Herrmann, P.S.P., Simões, M.L., Martin-Neto, L. & Mattoso, L.H.C. (2005a). Interface phenomena on conducting polymer films investigated with atomic force spectroscopy. In 12th International Symposium on Electrets, Giacometti, J.A., Oliveira, O.N., Jr., Faria, R.M. (Eds.), pp. 300303. Piscataway, NJ: IEEE.
Leite, F.L. & Herrmann, P.S.P. (2003). Characterization of adhesion force, of two soil minerals particles (mica and silicon), in the nanoscale, using atomic force microscopy. Acta Microsc 12(Suppl. A), 130131.Google Scholar
Leite, F.L. & Herrmann, P.S.P. (2005). Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: A review. J Adhes Sci Technol 19, 365405.Google Scholar
Leite, F.L., Paterno, L.G., Borato, C.E., Herrmann, P.S.P., Oliveira, O.N., Jr. & Mattoso, L.H.C. (2005b). Study on the adsorption of poly(o-ethoxyaniline) nanostructured films using atomic force microscopy. Polymer 46, 1250312510.Google Scholar
Leite, F.L., Riul, A., Jr. & Herrmann, P.S.P. (2003). Mapping of adhesion forces on soil minerals in air and water by atomic force spectroscopy (AFS). J Adhes Sci Technol 17, 21412156.Google Scholar
Lévy, R. & Maaloum, M. (2002). Measuring the spring constant of atomic force microscope cantilevers: Thermal fluctuations and other methods. Nanotechnology 13, 3337.Google Scholar
MacDiarmid, A.G., Chang, J.C., Richter, A.F. & Epstein, A.J. (1987). Polyaniline—A new concept in conducting polymers. Synth Met 18, 285290.Google Scholar
Mattoso, L.H.C., Manohar, S.K., MacDiarmid, A.G. & Epstein, A.J. (1995). Studies on the chemical syntheses and on the characteristics of polyaniline derivatives. J Polym Sci: Part A: Polym Chem 33, 12271234.Google Scholar
Meadows, P.Y., Bemis, J.E. & Walker, G.C. (2003). Single-molecule force spectroscopy of isolated and aggregated fibronectin proteins on negatively charged surfaces in aqueous liquids. Langmuir 19, 95669572.Google Scholar
Minko, S. & Roiter, Y. (2005). AFM single molecule single of adsorbed polyelectrolytes. Curr Opin Coll Interface Sci 10, 915.Google Scholar
Mizes, H.A., Loh, K.G., Miller, R.J.D., Ahuja, S.K. & Grabowski, E. (1991). Submicron probe of polymer adhesion with atomic force microscopy—Dependence on topography and material inhomogeneities. Appl Phys Lett 59, 29012903.Google Scholar
Mugele, F., Becker, T., Nikopoulos, R., Kohonen, M. & Herminghaus, S. (2002). Capillarity at the nanoscale: An AFM view. J Adhes Sci Technol 16, 951964.Google Scholar
Munz, N., Sturm, H., Schulz, E. & Hinrichsen, G. (1998). The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fibre reinforced polymers. Composites A 29, 12511259.Google Scholar
Neumeister, J.M. & Ducker, W.A. (1994). Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev Sci Instrum 65, 25272531.Google Scholar
Ngamna, O., Morrin, A., Moulton, S.E., Killard, A.J., Smith, M.R. & Wallace, G.G. (2005). An HRP based biosensor using sulphonated polyaniline. Synth Met 153, 185188.Google Scholar
Noy, A., Vezenov, D.V. & Lieber, C.M. (1997). Chemical force microscopy. Ann Rev Mater Sci 27, 381421.Google Scholar
Ortiz, C. & Hadziioannou, G. (1999). Entropic elasticity of single polymer chains of poly(methacrylic acid) measured by atomic force microscopy. Macromolecules 32, 780787.Google Scholar
Parsegian, V.A. & Gingell, D. (1972). Electrostatic interaction across a salt solution between 2 bodies bearing unequal charges. Biophys J 12, 11921204.Google Scholar
Pashley, R.M. (1981). Hydration forces between mica surfaces in aqueous electrolyte solutions. J Coll Interface Sci 80, 153162.Google Scholar
Pontes, R.S., Raposo, M., Camilo, C.S., Dhanabalan, A., Ferreira, M. & Oliveira, O.N., Jr. (1999). Non-equilibrium adsorbed polymer layers via hydrogen bonding. Phys Status Solidi A 173, 4150.Google Scholar
Prazeres, G.M.P., Batista, E. de J.O., de Souza, W., Bisch, P.M. & Weissmuller, G. (2003). Interaction between chondroitin-6-sulfate and entamoeba histolytica as revealed by force spectroscopy. Parasitology 104, 4046.Google Scholar
Raiteri, R., Grattarola, M., Butt, H.-J. & Skládal, P. (2001). Micromechanical cantilever-based biosensors. Sens Actuators B 79, 115126.Google Scholar
Riul, A., Jr., Dos Santos, D.S., Jr., Wohnrath, K., Di Thommazo, R., Carvalho, A.A.C.P.L.F., Fonseca, F.J., Oliveira, O.N., Jr., Taylor, D.M. & Mattoso, L.H.C. (2002). An artificial taste sensor: Efficient combination of sensors made from Langmuir–Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer. Langmuir 18, 239245.Google Scholar
Sirghi, L., Nakagiri, N., Sugisaki, K., Sugimura, H. & Takai, O. (2000). Effect of sample topography on adhesive force in atomic force spectroscopy measurements in air. Langmuir 16, 77967800.Google Scholar
Verwey, E.J.W. & Overbeek, J.T.G. (1948). Theory of the Stability of Lyophobic Colloids. New York: Elsevier Publishing Company.
Weisenhorn, A.L. & Hansma, P.K. (1989). Forces in atomic force microscopy in air and water. Appl Phys Lett 54, 26512653.Google Scholar
Weisenhorn, A.L., Maravald, P., Butt, H.-J. & Hansma, P.K. (1992). Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys Rev B 45, 1122611232.Google Scholar
Yotsumoto, H. & Yoon, R.-H. (1993). Application of extended DLVO theory. 2. stability of silica suspensions. J Coll Interface Sci 157, 434441.Google Scholar