Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T11:07:55.838Z Has data issue: false hasContentIssue false

Atom Probe Tomography Characterization of Dopant Distributions in Si FinFET: Challenges and Solutions

Published online by Cambridge University Press:  22 November 2019

Rong Hu
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
Jing Xue
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
Xingping Wu
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
Yanbo Zhang
Affiliation:
Institute of Microelectronics of Chinese Academy of Sciences, Beijing100029, China
Huilong Zhu
Affiliation:
Institute of Microelectronics of Chinese Academy of Sciences, Beijing100029, China
Gang Sha*
Affiliation:
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
*
*Author for correspondence: Gang Sha, E-mail: [email protected]
Get access

Abstract

Atom probe tomography (APT) has emerged as an important tool in characterizing three-dimensional semiconductor devices. However, the complex structure and hybrid nature of a semiconductor device can pose serious challenges to the accurate measurement of dopants. In particular, local magnification and trajectory aberration observed when analyzing hybrid materials with different evaporation fields can cause severe distortions in reconstructed geometry and uncertainty in local chemistry measurement. To address these challenges, this study systematically investigates the effect of APT sampling directions on the measurement of n-type dopants P and As in an Si fin field-effect transistor (FinFET). We demonstrate that the APT samples made with their Z-axis perpendicular to the center axis of the fin are effective to minimize the negative effects that result from evaporation field differences between the Si fin and SiO2 on reconstruction and achieve improved measurement of dopant distributions. In addition, new insights have been gained regarding the distribution of ion-implanted P and As in the Si FinFET.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, AC, Alexander, FB, Capio, CD & Smith, TE (1981). Characterization of plasma-deposited silicon dioxide. J Electrochem Soc 128(7), 15451551.CrossRefGoogle Scholar
Barnes, JP, Grenier, A, Mouton, I, Barraud, S, Audoit, G, Bogdanowicz, J, Fleischmann, C, Melkonyan, D, Vandervorst, W, Duguay, S, Rolland, N, Vurpillot, F & Blavette, D (2018). Atom probe tomography for advanced nanoelectronic devices: Current status and perspectives. Scr Mater 148, 9197.CrossRefGoogle Scholar
Cadel, E, Vurpillot, F, Lardé, R, Duguay, S & Deconihout, B (2009). Depth resolution function of the laser assisted tomographic atom probe in the investigation of semiconductors. J Appl Phys 106(4), 044908.CrossRefGoogle Scholar
De Geuser, F, Lefebvre, W, Danoix, F, Vurpillot, F, Forbord, B & Blavette, D (2007). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interface Anal 39(2–3), 268272.CrossRefGoogle Scholar
Estivill, R, Juhel, M, Gregoire, M, Grenier, A, Delaye, V & Blavette, D (2016). Atomic scale investigation of arsenic segregation in high-k metal gate stacks. Scr Mater 113, 231235.CrossRefGoogle Scholar
Frank, J (2006). Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell. New York, USA: Springer.CrossRefGoogle Scholar
Giddings, AD, Koelling, S, Shimizu, Y, Estivill, R, Inoue, K, Vandervorst, W & Yeoh, WK (2018). Industrial application of atom probe tomography to semiconductor devices. Scr Mater 148, 8290.CrossRefGoogle Scholar
Grenier, A, Duguay, S, Barnes, JP, Serra, R, Haberfehlner, G, Cooper, D, Bertin, F, Barraud, S, Audoit, G, Arnoldi, L, Cadel, E, Chabli, A & Vurpillot, F (2014). 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy 136, 185192.CrossRefGoogle ScholarPubMed
Grenier, A, Duguay, S, Barnes, JP, Serra, R, Rolland, N, Audoit, G, Morin, P, Gouraud, P, Cooper, D, Blavette, D & Vurpillot, F (2015). Three dimensional imaging and analysis of a single nano-device at the ultimate scale using correlative microscopy techniques. Appl Phys Lett 106, 213102.CrossRefGoogle Scholar
Han, B, Takamizawa, H, Shimizu, Y, Inoue, K, Nagai, Y, Yano, F, Kunimune, Y, Inoue, M & Nishida, A (2015). Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography. Appl Phys Lett 107(2), 023506.CrossRefGoogle Scholar
Inoue, K, Yano, F, Nishida, A, Takamizawa, H, Tsunomura, T, Nagai, Y & Hasegawa, M (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109(12), 14791484.CrossRefGoogle ScholarPubMed
Jin, S, Jones, KS, Law, ME & Camillo-Castillo, R (2012). B segregation to grain boundaries and diffusion in polycrystalline Si with flash annealing. J Appl Phys 111(4), 044508.CrossRefGoogle Scholar
Kwak, CM, Seol, JB, Kim, YT & Park, CG (2017). Laser-assisted atom probe tomography of four paired poly-Si/SiO2 multiple-stacks with each thickness of 10 nm. Appl Surf Sci 396, 497503.CrossRefGoogle Scholar
Larson, DJ, Lawrence, D, Lefebvre, W, Olson, D, Prosa, TJ, Reinhard, DA, Ulfig, RM, Clifton, PH, Bunton, JH, Lenz, D, Olson, JD, Renaud, L, Martin, I & Kelly, TF (2011). Toward atom probe tomography of microelectronic devices. J Phys Conf Ser 326, 012030.CrossRefGoogle Scholar
Lee, JH, Kim, YT, Kim, JJ, Lee, SY & Park, CG (2013). 3D compositional characterization of Si/SiO2 vertical interface structure by atom probe tomography. Electron Mater Lett 9(6), 747750.CrossRefGoogle Scholar
Lee, JH, Lee, BH, Kim, YT, Kim, JJ, Lee, SY, Lee, KP & Park, CG (2014). Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy. Micron 58, 3237.CrossRefGoogle ScholarPubMed
Martin, AJ, Wei, Y & Scholze, A (2018). Analyzing the channel dopant profile in next-generation FinFETs via atom probe tomography. Ultramicroscopy 186, 104111.CrossRefGoogle ScholarPubMed
Martin, AJ, Weng, W, Zhu, Z, Loesing, R, Shaffer, J & Katnani, A (2016). Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI. Ultramicroscopy 161, 105109.CrossRefGoogle Scholar
Martin, AJ & Yatzor, B (2019). Examining the effect of evaporation field on boron measurements in SiGe: Insights into improving the relationship between APT and SIMS measurements of boron. Microsc Microanal 25(3), 617624.CrossRefGoogle ScholarPubMed
Meisenkothen, F, Steel, EB, Prosa, TJ, Henry, KT & Prakash Kolli, R (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.CrossRefGoogle ScholarPubMed
Melkonyan, D, Fleischmann, C, Arnoldi, L, Demeulemeester, J, Kumar, A, Bogdanowicz, J, Vurpillot, F & Vandervorst, W (2017). Atom probe tomography analysis of SiGe fins embedded in SiO2: Facts and artefacts. Ultramicroscopy 179, 100107.CrossRefGoogle ScholarPubMed
Melkonyan, D, Fleischmann, C, Veloso, A, Franquet, A, Bogdanowicz, J, Morris, RJH & Vandervorst, W (2018). Wet-chemical etching of atom probe tips for artefact free analyses of nanoscaled semiconductor structures. Ultramicroscopy 186, 18.CrossRefGoogle ScholarPubMed
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246(1–3), 442449.CrossRefGoogle Scholar
Ngamo, M, Duguay, S, Pichler, P, Daoud, K & Pareige, P (2010). Characterization of Arsenic segregation at Si/SiO2 interface by 3D atom probe tomography. Thin Solid Films 518(9), 24022405.CrossRefGoogle Scholar
Padalkar, S, Riley, JR, Li, Q, Wang, GT & Lauhon, LJ (2014). Lift-out procedures for atom probe tomography targeting nanoscale features in core-shell nanowire heterostructures. Phys Status Solidi C 11(3–4), 656661.CrossRefGoogle Scholar
Panciera, F, Baudot, S, Hoummada, K, Gregoire, M, Juhel, M & Mangelinck, D (2012). Three-dimensional distribution of Al in high-k metal gate: Impact on transistor voltage threshold. Appl Phys Lett 100(20), 201909.CrossRefGoogle Scholar
Plummer, JD, Deal, MD & Griffin, PB (2009). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Dorling Kindersley/Pearson Education.Google Scholar
Rigutti, L, Bonef, B, Speck, J, Tang, F & Oliver, RA (2018). Atom probe tomography of nitride semiconductors. Scr Mater 148, 7581.CrossRefGoogle Scholar
Servanton, G, Pantel, R, Juhel, M & Bertin, F (2009). Two-dimensional quantitative mapping of arsenic in nanometer-scale silicon devices using STEM EELS–EDX spectroscopy. Micron 40(5), 543551.CrossRefGoogle ScholarPubMed
Sha, G & Cerezo, A (2005). Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy. Ultramicroscopy 102(2), 151159.CrossRefGoogle ScholarPubMed
Takamizawa, H, Shimizu, Y, Inoue, K, Toyama, T, Okada, N, Kato, M, Uchida, H, Yano, F, Nishida, A, Mogami, T & Nagai, Y (2011). Origin of characteristic variability in metal-oxide-semiconductor field-effect transistors revealed by three-dimensional atom imaging. Appl Phys Lett 99(13), 133502.CrossRefGoogle Scholar
Thompson, K, Lawrence, D, Larson, DJ, Olson, JD, Kelly, TF & Gorman, B (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2-3), 131139.CrossRefGoogle ScholarPubMed
Topuria, T, Browning, ND & Ma, Z (2003). Characterization of ultrathin dopant segregation layers in nanoscale metal–oxide–semiconductor field effect transistors using scanning transmission electron microscopy. Appl Phys Lett 83(21), 44324434.CrossRefGoogle Scholar
Tu, Y, Han, B, Shimizu, Y, Inoue, K, Fukui, Y, Yano, M, Tanii, T, Shinada, T & Nagai, Y (2017 a). Atom probe tomographic assessment of the distribution of germanium atoms implanted in a silicon matrix through nano-apertures. Nanotechnology 28(38), 385301.CrossRefGoogle Scholar
Tu, Y, Takamizawa, H, Han, B, Shimizu, Y, Inoue, K, Toyama, T, Yano, F, Nishida, A & Nagai, Y (2017 b). Influence of laser power on atom probe tomographic analysis of boron distribution in silicon. Ultramicroscopy 173, 5863.CrossRefGoogle ScholarPubMed
Vurpillot, F, Bostel, A & Blavette, D (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76(21), 31273129.CrossRefGoogle Scholar
Wilson, RG & Zavada, JM (2012). Secondary ion mass spectrometry of dopant and impurity elements in wide bandgap semiconductors. Mater Sci Eng R Rep 73(11), 101128.CrossRefGoogle Scholar