Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T06:02:46.487Z Has data issue: false hasContentIssue false

Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides

Published online by Cambridge University Press:  30 January 2017

Daniel Haley*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PH, UK
Paul A. J. Bagot
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PH, UK
Michael P. Moody
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PH, UK
*
*Corresponding author.[email protected]
Get access

Abstract

In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200–500 kPa (2–5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide–metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

Type
New Approaches and Correlative Microscopy
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carlson, D.E. & Magee, C.W. (1978). A SIMS analysis of deuterium diffusion in hydrogenated amorphous silicon. Appl Phys Lett 33(1), 8183.CrossRefGoogle Scholar
Dumpala, R., Haley, D, Broderick, S., Bagot, P., Moody, M. & Rajan, K. (2015). In-situ deuterium charging for direct detection of hydrogen in vanadium by atom probe tomography. Microsc Microanal 21(15), 695696.CrossRefGoogle Scholar
Durbin, D.J. & Malardier-Jugroot, C. (2013). Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38(34), 1459514617.Google Scholar
Flanagan, T.B. & Oates, W.A. (1991). The palladium-hydrogen system. Annu Rev Mater Sci 21(1), 269304.Google Scholar
Gemma, R., Al-Kassab, T., Kirchheim, R. & Pundt, A. (2012). Visualization of deuterium dead layer by atom probe tomography. Scr Mater 67(11), 903906.Google Scholar
Haley, D, Choi, P. & Raabe, D (2015). Guided mass spectrum labelling in atom probe tomography. Ultramicroscopy.Google Scholar
Haley, D., Merzlikin, S.V., Choi, P & Raabe, D. (2014). Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. Int J Hydrogen Energy 39(23), 1222112229.CrossRefGoogle Scholar
Ishikawa, R., Okunishi, E., Sawada, H., Kondo, Y., Hosokawa, F. & Abe, E. (2011). Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat Mater 10(4), 278281.Google Scholar
Kesten, P, Pundt, A., Schmitz, G., Weisheit, M., Krebs, H.U. & Kirchheim, R. (2002). H-and D distribution in metallic multilayers studied by 3-dimensional atom probe analysis and secondary ion mass spectrometry. J Alloys Compd 330, 225228.Google Scholar
Konda, S.K. & Chen, A. (2015). Palladium based nanomaterials for enhanced hydrogen spillover and storage. Mater Today.Google Scholar
Lanford, W.A. (1992). Analysis for hydrogen by nuclear reaction and energy recoil detection. Nucl Instrum Methods Phys Res B 66(1), 6582.Google Scholar
Li, T., Bagot, P.A.J., Marquis, E.A., Tsang, S.C.E. & Smith, G.D.W. (2012). Characterization of oxidation and reduction of a palladium-rhodium alloy by atom-probe tomography. J Phys Chem C 116(7), 47604766.Google Scholar
Li, Y. & Cheng, Y.-T. (1996). Hydrogen diffusion and solubility in palladium thin films. Int J Hydrogen Energy 21(4), 281291.Google Scholar
Maheshwari, P., Tian, H., Reece, C.E., Kelley, M.J., Myneni, G.R., Stevie, F.A., Rigsbee, J.M., Batchelor, A.D. & Griffis, D.P. (2011). Surface analysis of Nb materials for SRF cavities. Surf Interface Anal 43(1–2), 151153.CrossRefGoogle Scholar
Manchester, F.D. (Ed.) (2000). Phase Diagrams of Binary Hydrogen Alloys. Ohio: ASM International.Google Scholar
Meyer, J.C., Girit, C.O., Crommie, M.F. & Zettl, A. (2008). Imaging and dynamics of light atoms and molecules on graphene. Nature 454(7202), 319322.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Clarendon Press.Google Scholar
National Institute of Standards and Technology (2001). ‘Anderson Darling Test.’ Available at http://www.itl.nist.gov/div898/software/dataplot.html/refman1/auxillar/andedarl.htm, (retrieved April 24, 2016).Google Scholar
Papathanassopoulos, K. & Wenzl, H. (1982). Pressure-composition isotherms of hydrogen and deuterium in vanadium films measured with a vibrating quartz microbalance. J Phys F Met Phys 12(7), 13691381.Google Scholar
Romanenko, A. & Goncharova, L.V. (2011). Elastic recoil detection studies of near-surface hydrogen in cavity-grade niobium. Supercond Sci Technol 24(10), 105017.Google Scholar
Schwarz, R.B., Bach, H.T., Harms, U. & Tuggle, D. (2005). Elastic properties of Pd-hydrogen, Pd-deuterium, and Pd-tritium single crystals. Acta Mater 53(3), 569580.CrossRefGoogle Scholar
Sundell, G., Thuvander, M. & Andren, H.-O. (2016). Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys. Corros Sci 102, 490502.CrossRefGoogle Scholar
Takahashi, J., Kawakami, K., Kobayashi, Y. & Tarui, T. (2010). The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr Mater 63(3), 261264.Google Scholar
Takahashi, J., Kawakami, K. & Tarui, T. (2012). Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scr Mater 67(2), 213216.Google Scholar
Thiebaut, S., Bigot, A., Achard, J.C., Limacher, B., Leroy, D. & Percheron-Guegan, A (1995). Structural and thermodynamic properties of the deuterium-palladium solid solutions systems: D 2-[Pd (Pt), Pd (Rh), Pd (Pt, Rh)]. J Alloy Compd 231(1), 440447.Google Scholar