Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T16:40:48.737Z Has data issue: false hasContentIssue false

Annular Dark-Field Transmission Electron Microscopy for Low Contrast Materials

Published online by Cambridge University Press:  04 April 2013

F. Leroux
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171 B-2020 Antwerp, Belgium
E. Bladt
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171 B-2020 Antwerp, Belgium
J.-P. Timmermans
Affiliation:
Laboratory of Cell Biology & Histology, University of Antwerp, Groenenborgerlaan 171 B-2020 Antwerp, Belgium
G. Van Tendeloo
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171 B-2020 Antwerp, Belgium
S. Bals*
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171 B-2020 Antwerp, Belgium
*
*Corresponding author. Email: [email protected]
Get access

Abstract

Imaging soft matter by transmission electron microscopy (TEM) is anything but straightforward. Recently, interest has grown in developing alternative imaging modes that generate contrast without additional staining. Here, we present a dark-field TEM technique based on the use of an annular objective aperture. Our experiments demonstrate an increase in both contrast and signal-to-noise ratio in comparison to conventional bright-field TEM. The proposed technique is easy to implement and offers an alternative imaging mode to investigate soft matter.

Type
Equipment and Techniques Development: Biological
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bals, S., Kabius, B., Haider, M., Radmilovic, V. & Kisielowski, C. (2004). Annular dark field imaging in a TEM. Solid State Commun 130, 675680.CrossRefGoogle Scholar
Bals, S., Kilaas, R. & Kisielowski, C. (2005). Nonlinear imaging using annular dark field TEM. Ultramicroscopy 104, 281289.CrossRefGoogle ScholarPubMed
Bals, S., Van Tendeloo, G. & Kisielowski, C. (2006). A new approach for electron tomography: Annular dark-field transmission electron microscopy. Adv Mater 18, 892895.CrossRefGoogle Scholar
de Jonge, N., Sougrat, R., Peckys, D.B., Lupini, A.R. & Perez-Cabero, M. (2010). Three-dimensional aberration-corrected scanning transmission electron microscopy for biology. In Nanotechnology in Biology and Medicine, Tuan, V.D. (Ed.), Chap. 13, pp. 127. Boca Raton, FL: CRC Press.Google Scholar
Dries, M., Schultheiss, K., Gamm, B., Rosenauer, A., Schroder, R.R. & Gerthsen, D. (2011). Object-wave reconstruction by carbon film-based Zernike- and Hilbert-phase plate microscopy: A theoretical study not restricted to weak-phase objects. Ultramicroscopy 111, 159168.CrossRefGoogle Scholar
Dupouy, G., Perrier, F. & Verdier, P. (1966). Amelioration du contraste des images dobjets amorphes minces en microscopie electronique. J Microsc-Oxford 5, 655668.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.CrossRefGoogle ScholarPubMed
Egerton, R.F. & Rauf, I. (1999). Dose-rate dependence of electron-induced mass loss from organic specimens. Ultramicroscopy 80, 247254.CrossRefGoogle Scholar
Hayat, M.A. (2000). Positive staining. In Principles and Techniques of Electron Microscopy: Biological Applications, Chap. 6, pp. 242366. New York: Cambridge University Press.Google Scholar
Heineman, K. & Poppa, H. (1972). Selected-zone dark-field electron-microscopy. Appl Phys Lett 20, 122125.CrossRefGoogle Scholar
Majorovits, E., Barton, B., Schultheiss, K., Perez-Willard, F., Gerthsen, D. & Schroder, R.R. (2007). Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107, 213226.CrossRefGoogle ScholarPubMed
Malac, M., Beleggia, M., Egerton, R. & Zhu, Y.M. (2008). Imaging of radiation-sensitive samples in transmission electron microscopes equipped with Zernike phase plates. Ultramicroscopy 108, 126140.CrossRefGoogle ScholarPubMed
Misell, D.L. (1977). Conventional and scanning-transmission electron-microscopy—Image-contrast and radiation-damage. J Phys D Appl Phys 10, 10851107.CrossRefGoogle Scholar
Pan, Y.H., Sader, K., Powell, J.J., Bleloch, A., Gass, M., Trinick, J., Warley, A., Li, A., Brydson, R. & Brown, A. (2009). 3D morphology of the human hepatic ferritin mineral core: New evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J Struct Biol 166, 2231.CrossRefGoogle ScholarPubMed
Rez, P. (2003). Comparison of phase contrast transmission electron microscopy with optimized scanning transmission annular dark field imaging for protein imaging. Ultramicroscopy 96, 117124.CrossRefGoogle ScholarPubMed
Schultheiss, K., Perez-Willard, F., Barton, B., Gerthsen, D. & Schroder, R.R. (2006). Fabrication of a Boersch phase plate for phase contrast imaging in a transmission electron microscope. Rev Sci Instrum 77, 14.CrossRefGoogle Scholar
Staniewicz, L., Donald, A.M. & Stokes, D.J. (2010). The effect of osmium staining on lamellar spacing in thin polystyrene-polyisoprene diblock copolymer films. J Phys Conf Ser 51, 12.Google Scholar
Williams, D.B. & Carter, C.B. (2004). Lenses, apertures and resolution. In Transmission Electron Microscopy: A Textbook for Materials Science, Chap. 6, pp. 91111. New York: Springer.Google Scholar
Yakushevska, A., Lebbink, M., Geerts, W., Spek, L., van Donselaar, E., Jansen, K., Humbel, B., Post, J., Verkleij, A. & Koster, A. (2007). STEM tomography in cell biology. J Struct Biol 159, 381391.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Leroux supplementary material

Leroux supplementary material

Download Leroux supplementary material(PDF)
PDF 60.2 KB