Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T11:23:06.059Z Has data issue: false hasContentIssue false

Anatomy and Development of the Endodermis and Phellem of Quercus suber L. Roots

Published online by Cambridge University Press:  04 April 2013

Adelaide Machado
Affiliation:
Centro de Estudos Florestais, Instituto superior de Agronomia, Universidade Técnica de Lisboa, 1349-017, Portugal
Helena Pereira
Affiliation:
Centro de Estudos Florestais, Instituto superior de Agronomia, Universidade Técnica de Lisboa, 1349-017, Portugal
Rita Teresa Teixeira*
Affiliation:
Centro de Estudos Florestais, Instituto superior de Agronomia, Universidade Técnica de Lisboa, 1349-017, Portugal
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Quercus suber L. has been investigated with special attention to the stem bark and its cork formation layer, but excluding the roots. Roots are the location of infection by pathogens such as Phytophthora cinnamomi responsible for the tree's sudden death. It is widely accepted that suberin establishes boundaries within tissues, serves as a barrier against free water and ion passage, and works as a shield against pathogen attacks. We followed the suberization of young secondary roots of cork oak. The first suberin deposition detectable by transmission electron microscopy (TEM) and neutral red (NR) was in the endoderm Casparian strips. Casparian strips are not detected by Sudan red 7B and Fluorol yellow (FY) that specifically stain lamellae suberin. Reaction to Sudan was verified in the endodermis and later on in phellem cells that resulted from the phellogen. Under TEM, the Sudan and FY-stained cells showed clear suberin lamellae while the newer formed phellem cells displayed a distinct NR signal compared to the outermost phellem cells. We concluded that suberin chemical components are arranged differently in the cell wall according to the physiological role or maturation stage of a given tissue.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bento, M.F., Pereira, H., Cunha, M.Á., Moutinho, A.M.C., Van Den Berg, K.J. & Boon, J.J. (2001). A study of variability of suberin composition in cork from Quercus suber L. using thermally assisted transmethylation GC-MS. J Anal Appl Pyrolysis 57, 4555.CrossRefGoogle Scholar
Bernards, M. (2002). Demystifying suberin. Can J Bot 80, 227240.CrossRefGoogle Scholar
Biggs, A.R. & Miles, N.W. (1988). Association of suberin formation in uninoculated wounds with susceptibility to Leucostoma cincta and L. persoonii in various peach cultivars. Phytopathology 78, 10701074.CrossRefGoogle Scholar
Brundrett, C.M. (2002). Coevolution of roots and microrrhizas of land plants. New Phytol 154, 275304.CrossRefGoogle ScholarPubMed
Cline, M.N. & Neely, D. (1983). The histology and histochemistry of the wound-healing process in geranium cuttings. J Amer Soc Hort Sci 108, 496502.CrossRefGoogle Scholar
Coelho, A.C., Ebadzad, G., Horta, M. & Cravador, A. (2011). Quercus suberP. cinnamomi interaction: Hypothetical molecular mechanism model. New Zeal J Forest Sci 41S, S143S157.Google Scholar
Davison, E.M., Stukely, M.J.C., Crane, C.E. & Tay, F.C.S. (1994). Invasion of phloem and xylem of woody stems and roots of Eucalyptus marginata and Pinus radiata by Phytophthora cinnamomi . Phytopathology 84, 335340.CrossRefGoogle Scholar
Dickison, W. (2000). Integrative Plant Anatomy, p. 533. San Diego, CA: Academic Press.Google Scholar
Dubrovsky, J.G., Gambetta, G.A., Hernandez-Barrera, A., Shishkova, S. & Gonzalez, I. (2006). Lateral root initiation in Arabidopsis: Developmental window, spatial patterning, density and predictability. Ann Bot (London) 97, 903915.Google Scholar
Enstone, D.E., Peterson, C.A. & Ma, F. (2003). Root endodermis and exodermis: Structure, function, and responses to the environment. J Plant Growth Regul 21, 335351.CrossRefGoogle Scholar
Erwing, D.C. & Ribeiro, O.K. (1996). Phytophthora Diseases World-Wide. St. Paul, MN: APS Press.Google Scholar
Franke, R. & Schreiber, L. (2007). Suberin—A biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10, 252259.CrossRefGoogle ScholarPubMed
Graça, J. & Pereira, H. (1997). Cork suberin: A glyceryl based polyester. Holzforschung 51, 225234.CrossRefGoogle Scholar
Graça, J. & Pereira, H. (2000). Methanolysis of bark suberins: Analysis of glycerol and acid monomers. Phytochem Anal 11, 4551.3.0.CO;2-8>CrossRefGoogle Scholar
Graça, J. & Santos, S. (2007). Suberin: A biopolyester of plants' skin. Macromol Biosci 7, 128135.CrossRefGoogle ScholarPubMed
Holloway, P. (1972). The composition of suberin from the corks of Quercus suber L. and Betula pendulata Roth. Chem Phys Lipids 9, 158170.CrossRefGoogle Scholar
Huitema, E., Bos, J.I.B., Tian, M., Win, J., Waugh, M.E. & Kamoun, S. (2004). Linking sequence to phenotype in Phytophthora—Plant interactions. Trends Microb 12, 193200.CrossRefGoogle ScholarPubMed
Kolattukudy, P.E. & Espelie, K.E. (1989). Chemistry, biochemistry and functions of suberin associated waxes. In Natural Products of Woody Plants I, Rowe, J.W. (Ed.), pp. 235287. New York: Springer-Verlag.Google Scholar
Lulai, E.C. & Corsini, D.L. (1998). Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol Mol Plant Pathol 53, 209222.CrossRefGoogle Scholar
Lulai, E.C. & Morgan, W.C. (1992). Histochemical probing of potato periderm with neutral red: A sensitive cytofluorochrome for the hydrophobic domain of suberin. Biotech Histochem 67, 185195.CrossRefGoogle ScholarPubMed
McKenzie, B.E. & Peterson, C.A. (1995). Root browning in Pinus banksiana lamb and Eucalyptus pilularis Sm. 1. Anatomy and permeability of the white and tannin zones. Bot Acta 108, 127137.CrossRefGoogle Scholar
Melchior, W. & Steudle, E. (1993). Water transport in onion (Allium cepa L.) roots: Changes of axial and radial hydraulic conductivities during development. Plant Physiol 101, 13051315.CrossRefGoogle Scholar
Pereira, H. (2007). Cork: Biology, Production and Uses. Amsterdam: Elsevier.Google Scholar
Pereira, H. (1988a). Chemical composition and variability of cork form Quercus suber L. Wood Sci Technol 22, 211218.CrossRefGoogle Scholar
Pereira, H. (1988b). Structure and chemical composition of cork from Calotropis procera (Ait) R. Br. IAWA Bull 9, 5358.CrossRefGoogle Scholar
Robin, G., Capron, G. & Desprez-Loustau, M.L. (2001). Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathol 50, 708716.CrossRefGoogle Scholar
Schmutz, A., Buchala, A. & Ryser, U. (1996). Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiol 110, 403411.CrossRefGoogle ScholarPubMed
Schreiber, L. (1996). Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: Evidence for lignin. Planta 199, 596601.CrossRefGoogle Scholar
Schreiber, L., Hartmann, K., Skrabs, M. & Zeier, J. (1999). Apoplastic barriers in roots: Chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50, 12671312.Google Scholar
Scott, M.G. & Peterson, R.L. (1979). The root endodermis in Ranunculus acris. II. Histochemistry of the endodermis and the synthesis of phenolic compounds in roots. Can J Bot 57, 10401062.CrossRefGoogle Scholar
Smith, S.E. & Read, D.J. (1977). Mycorrhizal Symbiosis, p. 605. New York: Academic Press.Google Scholar
Spurr, A.R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 3143.CrossRefGoogle ScholarPubMed
Teixeira, R. & Pereira, H. (2009). Ultrastructural observations reveal the presence of channels between cork cells. Microsc Microanal 15, 539544.CrossRefGoogle ScholarPubMed
Thomas, R., Fang, X., Ranathunge, K., Anderson, T.R., Peterson, C.A. & Bernards, M.A. (2007). Soybean root suberin: Anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae . Plant Physiol 144, 299311.CrossRefGoogle ScholarPubMed
Van Fleet, D.S. (1961). Histochemistry and function of the endodermis. Bot Rev 27, 165220.CrossRefGoogle Scholar
Verdaguer, D., Casero, P.J. & Molinas, M. (2000). Lateral root development in a woody plant, Quercus suber L. (cork oak). Can J Bot 78, 11251135.Google Scholar
Verdaguer, D. & Molinas, M. (1997). Development and ultrastructure of the endodermis in the primary root of cork oak (Quercus suber). Can J Bot 75, 769780.CrossRefGoogle Scholar
Verdaguer, D. & Molinas, M. (1999). Developmental anatomy and apical organization of the primary root of cork oak (Quercus suber L.). Int J Plant Sci 160, 471481.CrossRefGoogle Scholar
Zeier, J. & Schreiber, L. (1998). Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: Chemical composition in relation to fine structure. Planta 206, 349361.CrossRefGoogle Scholar