Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T04:05:32.596Z Has data issue: false hasContentIssue false

Analysis of Roughness and Surface Hardness of a Dental Composite Using Atomic Force Microscopy and Microhardness Testing

Published online by Cambridge University Press:  15 April 2011

Marcos Aurélio Bomfim da Silva*
Affiliation:
Department of Dental Materials, Piracicaba Dental School, University of Campinas-UNICAMP, Av Limeira, 901, Postal Code 52, 13414-903, Piracicaba, São Paulo, Brazil
Aline Barbirato Fardin
Affiliation:
Department of Restorative Dentistry, Alagoas Federal University (UFAL), Av Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, Alagoas, Brazil
Renata Carvalho Cabral de Vasconcellos
Affiliation:
Department of Restorative Dentistry, Alagoas Federal University (UFAL), Av Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, Alagoas, Brazil
Lucineide de Melo Santos
Affiliation:
Department of Restorative Dentistry, Alagoas Federal University (UFAL), Av Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, Alagoas, Brazil
Josealdo Tonholo
Affiliation:
Institute of Chemistry and Biotechnology, Alagoas Federal University (UFAL), Av Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, Alagoas, Brazil
José Ginaldo da Silva Júnior
Affiliation:
Institute of Chemistry and Biotechnology, Alagoas Federal University (UFAL), Av Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, Alagoas, Brazil
José Ivo Limeira dos Reis
Affiliation:
Department of Restorative Dentistry, Alagoas Federal University (UFAL), Av Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, Alagoas, Brazil
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The objective of this study was to evaluate the influence of a cola soft drink (CSD) and coffee on the microhardness and surface roughness of composite resin. Fifty cavities were prepared on the vestibular surface of bovine incisors and restored with nanoparticulate resin. The teeth were divided into five groups (n = 10): group A (control), immersion in artificial saliva (AS) for 14 days; group B, immersion in coffee for 15 min (3×/day) for 7 days followed by immersion in AS for another 7 days; group C, immersion in CSD for 15 min (3×/day) for 7 days followed by immersion in AS for another 7 days; group D, immersion in AS for 7 days, immersion in coffee for 15 min (3×/day) for 7 days; group E, immersion in AS for 7 days, immersion in CSD for 15 min (3×/day) for 7 days. After the immersion periods the specimens were analyzed for their microhardness and surface roughness. The data were subjected to analysis of variance (ANOVA) followed by t-test with 5% significance. Group A presented the highest average microhardness and lowest surface roughness, so it was possible to conclude that the consumption of CSD and coffee alters the microhardness and surface roughness of new restorations.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abu-Bakr, N., Han, L., Okamoto, A. & Iwaku, M. (2000). Changes in the mechanical properties and surface texture of compomer immersed in various media. J Prosthet Dent 84, 444452.CrossRefGoogle ScholarPubMed
Aliping-McKenzie, M., Linden, R.W.A. & Nicholson, J.W. (2004). The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and ‘compomers.’ J Oral Rehabil 31, 10461052.CrossRefGoogle ScholarPubMed
Batista, L.H., Júnior, J.G., Silva, M.F. & Tonholo, J. (2007). Atomic force microscopy of removal of dentin smear layers. Microsc Microanal 13, 245250.CrossRefGoogle ScholarPubMed
Binnig, G., Quate, C.F. & Gerber, C.H. (1986). Atomic force microscope. Phys Rev Lett 56, 930933.CrossRefGoogle ScholarPubMed
Botta, A.C., Júnior, S.D., Paulin Filho, P.I. & Gheno, S.M. (2008). Effect of dental finishing instruments on the surface roughness of composite resins as elucidated by atomic force microscopy. Microsc Microanal 14, 380386.CrossRefGoogle ScholarPubMed
Diaz-Arnold, A.M., Holmes, D.C., Wistrom, D.W. & Swift, E.J. Jr. (1995). Short-term fluoride release/uptake of glass ionomer restoratives. Dent Mater 11, 96101.CrossRefGoogle ScholarPubMed
Dos Santos, P.A., Garcia, P.P., De Oliveira, A.L., Chinelatti, M.A. & Palma-Dibb, R.G. (2010). Chemical and morphological features of dental composite resin: Influence of light curing units and immersion media. Microsc Res Tech 73, 176181.CrossRefGoogle ScholarPubMed
Ferracane, J.L. (1996). The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resin. J Biomed Mater Res 20, 121131.CrossRefGoogle Scholar
Ferracane, J.L. (2006). Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22, 211212.CrossRefGoogle ScholarPubMed
Gonçalves, F., Calheiros, F.C., Witzel, M.F., Kawano, Y. & Braga, R.R. (2007). Effect of photoactivation protocol and radiant exposure on monomer conversion and flexural strength of a resin composite after water and ethanol storage. J Biomed Mater Res B Appl Biomater 82, 8992.CrossRefGoogle ScholarPubMed
Kakaboura, A., Fragouli, M., Rahiotis, C. & Silikas, N. (2007). Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J Mater Sci Mater Med 18, 155163.CrossRefGoogle ScholarPubMed
Kitchens, M. & Owens, B.M. (2007). Effect of carbonated beverages, coffee, sports and high energy drinks, and bottled water on the in vitro erosion characteristics of dental enamel. J Clin Pediatr Dent 31, 153159.CrossRefGoogle ScholarPubMed
Lussi, A., Jaeggi, T. & Zero, D. (2004). The role of diet in the aetiology of dental erosion. Caries Res 38, 3444.CrossRefGoogle ScholarPubMed
Mitra, S.B., Wu, D. & Holmes, B. (2003). An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134, 13821390.CrossRefGoogle ScholarPubMed
Moraes, R.R., Gonçalves, L. de S., Lancellotti, A.C., Consani, S., Correr-Sobrinho, L. & Sinhoreti, M.A. (2009). Nanohybrid resin composites: Nanofiller loaded materials or traditional microhybrid resins? Oper Dent 34, 551557.CrossRefGoogle ScholarPubMed
Nagem Filho, H., Azevedo, M.T.F.S., Nagem, H.D. & Marsola, F.P. (2003). Surface roughness of composite resins after finishing and polishing. Braz Dent J 14, 3741.CrossRefGoogle ScholarPubMed
O'Brien, W.J. & Yee, J.J. (1980). Microstructure of posterior restorations of composite resin after clinical wear. Oper Dent 5, 9094.Google ScholarPubMed
Paravina, R.D., Roeder, L., Lu, H., Vogel, K. & Powers, J.M. (2004). Effect of finishing and polishing procedures on surface roughness, gloss and color of resin based composites. Am J Dent 17, 262266.Google ScholarPubMed
Pedrini, D., Candido, M.S. & Rodrigues, A.L. (2003). Analysis of surface roughness of glass-ionomer cements and compomer. J Oral Rehabil 30, 714719.CrossRefGoogle ScholarPubMed
Sarac, D., Sarac, Y.S., Kulunk, S., Ural, C. & Kulunk, T. (2006). The effect of polishing techniques on the surface roughness and color change of composite resins. J Prosthet Dent 96, 3340.CrossRefGoogle ScholarPubMed
Sarkar, N.K. (2000). Internal corrosion in dental composite wear: Its significance and simulation. J Biomed Mater Res 53, 371380.3.0.CO;2-N>CrossRefGoogle Scholar
Schneider, L.F., Moraes, R.R., Cavalcante, L.M., Sinhoreti, M.A., Correr-Sobrinho, L. & Consani, S. (2008). Cross-link density evaluation through softening tests: Effect of ethanol concentration. Dent Mater 24, 199203.CrossRefGoogle ScholarPubMed
Silikas, N., Kavvadia, K., Eliades, G. & Watts, D.C. (2005). Surface characterization of modern resin composites: A multitechnique approach. Am J Dent 18, 95100.Google ScholarPubMed
Topcu, F.T., Sahinkesen, G., Yamanel, K., Erdemir, U., Oktay, E.A. & Ersahan, S. (2009). Influence of different drinks on the colour stability of dental resin composites. Eur J Dent 3, 5056.Google ScholarPubMed
von Fraunhofer, J.A. & Rogers, M.W. (2004). Dissolution of dental enamel in soft drinks. Gen Dent 29, 308312.Google Scholar
West, N.X., Hughes, J.A. & Addy, M. (2000). Erosion of dentin and enamel in vitro by dietary acids: The effect of temperature, acid character, concentration and exposure time. J Oral Rehabil 27, 875880.CrossRefGoogle ScholarPubMed
Wongkhangee, S., Patanapiradej, V., Maneenut, C. & Tantbirojn, D. (2006). Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J Dent 34, 214220.CrossRefGoogle Scholar
Yanikoglu, N., Duymus, Y.Z. & Yilmaz, B. (2009). Effects of different solutions on the surface hardness of composite resin materials. Dent Mater J 28, 344351.CrossRefGoogle ScholarPubMed
Yap, A.U., Lye, K.W. & Sau, C.W. (1997). Surface characteristics of tooth-colored restoratives polished utilizing different polishing systems. Oper Dent 22, 260265.Google ScholarPubMed
Yap, A.U., Tan, D.T.T., Goh, B.K.C., Kuah, H.G. & Goh, M. (2000). Effect of food-simulating liquids on the flexural strength of composite and polyacid-modified composite restoratives. Oper Dent 25, 202208.Google ScholarPubMed