Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T19:50:04.127Z Has data issue: false hasContentIssue false

Aberration-Corrected Scanning Transmission Electron Microscope (STEM) Through-Focus Imaging for Three-Dimensional Atomic Analysis of Bismuth Segregation on Copper [001]/33° Twist Bicrystal Grain Boundaries

Published online by Cambridge University Press:  05 May 2016

Charles Austin Wade*
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA Materials Performance Centre, University of Manchester, Manchester M13 9PL, UK
Mark J. McLean
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
Richard P. Vinci
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
Masashi Watanabe
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Scanning transmission electron microscope (STEM) through-focus imaging (TFI) has been used to determine the three-dimensional atomic structure of Bi segregation-induced brittle Cu grain boundaries (GBs). With TFI, it is possible to observe single Bi atom distributions along Cu [001] twist GBs using an aberration-corrected STEM operating at 200 kV. The depth resolution is ~5 nm. Specimens with GBs intentionally inclined with respect to the microscope’s optic axis were used to investigate Bi segregant atom distributions along and through the Cu GB. It was found that Bi atoms exist at most once per Cu unit cell along the GB, meaning that no continuous GB film is present. Therefore, the reduced fracture toughness of this particular Bi-doped Cu boundary would not be caused by fracture of Bi–Bi bonds.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: National Institute of Standards and Technology, Materials Measurement Science Division, 100 Bureau Drive, Mailstop 8370, Gaithersburg, MD 20899, USA.

References

Armstrong, D.E.J., Wilkinson, A.J. & Roberts, S.G. (2011). Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philos Mag Lett 91(6), 394400.Google Scholar
Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A. & Bartelt, N.C. (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 15791585.Google Scholar
Blake, R.G., Jostsons, A., Kelly, P.M. & Napier, J.G. (1978). The determination of extinction distances and anomalous absorption coefficients by scanning transmission electron microscopy. Philos Mag A 37(1), 116.Google Scholar
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci U S A 103(9), 30443048.Google Scholar
Borisevich, A.Y., Lupini, A.R., Travaglini, S. & Pennycook, S.J. (2006). Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J Electron Microsc 55(1), 712.Google Scholar
Cosgriff, E.C. & Nellist, P.D. (2007). A Bloch wave analysis of optical sectioning in aberration-corrected STEM. Ultramicroscopy 107, 626634.Google Scholar
Duscher, G., Chisholm, M.F., Alber, U. & Ruhle, M. (2004). Bismuth-induced embrittlement of copper grain boundaries. Nat Mater 3, 621626.10.1038/nmat1191Google Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102(9), 096101.Google Scholar
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.Google Scholar
Hampe, W. (1874). Beiträge zu der Metallurgie des Kupfers. Berg-Hütten und Salinenwesen 22, 93138.Google Scholar
Ishikawa, R., Lupini, A.R., Findlay, S.D., Taniguchi, T. & Pennycook, S.J. (2014). Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy. Nano Lett 14, 19031908.Google Scholar
Keast, V.J., Bruley, J., Rez, P., Maclaren, J.M. & Williams, D.B. (1998). Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu. Acta Mater 46(2), 481490.Google Scholar
Lee, Z., Rose, H., Lehtinen, O., Biskupek, J. & Kaiser, U. (2014). Electron dose dependence of signal-to-noise ratio, atomic contrast and resolution in transmission electron microscope images. Ultramicroscopy 145, 312.Google Scholar
Li, G.H. & Zhang, L.D. (1995). Relationship between misorientation and bismuth induced embrittlement of [001] tilt boundary in copper bicrystal. Scripta Metall 32(9), 13351340.Google Scholar
Luo, J., Cheng, H., Asl, K.M., Kiely, C.J. & Harmer, M.P. (2011). The role of a bilayer interfacial phase on liquid metal embrittlement. Science 333, 17301733.Google Scholar
Lupini, A., Borisevich, A.Y., Idrobo, J.C., Christen, H.M., Biegalski, M. & Pennycook, S.J. (2009). Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc Microanal 15, 441453.Google Scholar
McLean, M.J., Wade, C.A., Watanabe, M. & Vinci, R.P. (2014). Microscale fracture toughness of bismuth doped copper bicrystals using edge notched microtensile tests. Exp Mech 54, 685688.Google Scholar
Midgley, P.A. & Weyland, M. (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96(3–4), 413431.Google Scholar
Nellist, P. (2011). The principles of STEM imaging. In Scanning Transmission Electron Microscopy, Pennycook S.J. & Nellist P.D. (Eds.), pp. 91115. New York: Springer.Google Scholar
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.Google Scholar
Powell, B.D. & Mykura, M. (1973). The segregation of bismuth to grain boundaries in copper-bismuth alloys. Acta Metall 21, 11511156.10.1016/0001-6160(73)90031-XGoogle Scholar
Raabe, D., Herbig, M., Sandlobes, S., Li, Y., Tytko, D., Kuzmina, M., Ponge, D. & Choi, P.P. (2014). Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18, 253261.Google Scholar
Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y. & Takayanagi, K. (2009). STEM imaging of 47-pm-seperated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J Electron Microsc 58, 357361.Google Scholar
Schaffer, B., Grogger, W. & Kothleitner, G. (2004). Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102(1), 2736.Google Scholar
Schweinfest, R., Paxton, A.T. & Finnis, M.W. (2004). Bismuth embrittlement of copper is an atomic size effect. Nature 432, 10081011.Google Scholar
Seah, M.P. & Hondros, E.D. (1973). Grain boundary segregation. Proc R Soc Lond A Math Phys Sci 335, 191212.Google Scholar
Shibata, N., Findlay, S.D., Azuma, S., Mizoguchi, T., Yamamoto, T. & Ikuhara, Y. (2009). Atomic-scale imaging of individual dopant atoms in a buried interface. Nat Mater 8, 654658.Google Scholar
Sigle, W., Ciiang, L.S. & Gusr, W. (2002). On the correlation between grain-boundary segregation, faceting and embrittlement in Bi-doped Cu. Philos Mag A 82(8), 15951608.Google Scholar
van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2006). Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 10621068.Google Scholar
Watanabe, M. (2011). X-ray energy-dispersive spectrometry in STEM. In Scanning Transmission Electron Microscopy, Pennycook S.J. & Nellist P.D. (Eds.), pp. 291351. New York: Springer.Google Scholar
Xin, H.L., Intaraprasonk, V. & Muller, D.A. (2008). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125.Google Scholar
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc (Tokyo) 58(3), 157165.Google Scholar
Yang, H., Lozano, J.G., Pennycook, T.J., Jones, L., Hirsch, P.B. & Nellist, P.D. (2015). Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning. Nat Commun 6, 7266. (7 pp.).Google Scholar