Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T05:25:49.641Z Has data issue: false hasContentIssue false

Aberration-Corrected Transmission Electron Microscopic Study of the Central Dark Line Defect in Human Tooth Enamel Crystals

Published online by Cambridge University Press:  15 September 2016

José Reyes-Gasga*
Affiliation:
Instituto de Física, UNAM. Circuito de la Investigación s/n, Ciudad Universitaria. 04510 Coyoacan, México, D.F., México
Joseph Hémmerlé
Affiliation:
INSERM UMR_S 1121, Faculté de Chirurgie Dentaire, Université de Strasbourg, 67085 Strasbourg, France
Etienne F. Brès
Affiliation:
UMET, Bâtiment C6, Université de Lille 1—Sciences et Technologies, 59650 Villeneuve d’Ascq, France
*
*Corresponding author. [email protected]
Get access

Abstract

Angstrom resolution images of human tooth enamel (HTE) crystallites were obtained using aberration-corrected high-resolution transmission electron microscopy and atomic-resolution scanning transmission electron microscopy in the modes of bright field, annular dark field, and high-angle annular dark-field. Images show that the central dark line (CDL) defect observed around the center of the HTE crystals is a site for caries formation in the HTE and has a thickness of ~0.2 nm. Results also suggest that the CDL goes through one of the OH planes.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arends, J. (1973). Dislocations and dissolution of enamel. Caries Res 7, 261268.Google Scholar
Arends, J. & Jongebloed, W.L. (1977). Dislocations and dissolution in apatites: Theoretical calculations. Caries Res 11, 186188.Google Scholar
Brès, E.F., Barry, J.C. & Hutchison, J.L. (1984). A structural basis for the carious dissolution of the apatite crystals of human tooth enamel. Ultramicroscopy 12, 367372.Google Scholar
Brès, E.F., Hutchison, J.L., Voegel, J.C. & Frank, R.M. (1990). Observation of a low angle grain boundary in tooth enamel crystals using HREM. J. Phys Colloq 51–C1, 97102.Google Scholar
Brès, E.F., Hutchison, J.L., Senger, B., Voegel, J.C. & Frank, R.M. (1991). HREM study of irradiation damage in human dental enamel crystals. Ultramicroscopy 35, 305322.CrossRefGoogle ScholarPubMed
Brès, E.F., Reyes-Gasga, J., Rey, Ch. & Michel, J. (2014). Probe size study of apatite irradiation in STEM. Eur Phys J Appl Phys 67, 20401.Google Scholar
Brès, E.F., Waddington, W.G., Voegel, J.-C., Barry, J.C. & Frank, R.M. (1986). Theoretical detection of a dark contrast line in twinned apatite bicrystals and its possible correlation with the chemical properties of human dentin and enamel crystals. Biophys J 50, 11851193.CrossRefGoogle ScholarPubMed
Chang, K.B., Edwards, B.W., Frazer, L., Lenferink, E.J., Stanev, T.K., Stern, N.P., Nino, J.C. & Poeppelmeier, K.R. (2016). Hydrothermal crystal growth, piezoelectricity, and triboluminescence of KNaNbOF5 . J Solid State Chem 236, 7882.CrossRefGoogle Scholar
Chen, C., Wang, Z., Saito, M., Tohei, T., Takano, Y. & Ikuhara, Y. (2014). Fluorine in shark teeth: its direct atomic-resolution imaging and strengthening function. Angew Chem Int Ed 53, 15431547.Google Scholar
Featherstone, J.D. (2004). The continuum of dental caries—evidence for a dynamic disease process. J Dent Res 83(Special Issue C), C39C42.Google Scholar
Findlay, S.D., Kohno, Y., Cardamone, L.A., Ikuhara, Y. & Shibata, N. (2014). Enhanced light element imaging in atomic resolution scanning transmission electron microscopy. Ultramicroscopy 136, 3141.CrossRefGoogle ScholarPubMed
Frazier, P.D. (1968). Adult human enamel I: An electron microscopic study of crystalline size and morphology. J Ultrastruct Res 22, 111.CrossRefGoogle Scholar
Grandfield, K., McNally, E.A., Palmquist, A., Botton, G.A., Thomsen, P. & Engqvist, H. (2010). Visualizing biointerfaces in three dimensions: electron tomography of the bone-hydroxyapatite interface. J R Soc Interface 7, 14971501.Google Scholar
Grieb, T., Muller, K., Fritz, R., Schowalter, M., Neugebohrn, N., Knaub, N., Volz, K. & Rosenauer, A. (2012). Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis. Ultramicroscopy 117, 1523.Google Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). A spherical-aberration-corrected 200kV transmission electron microscope. Ultramicroscopy 75, 5360.Google Scholar
Jongebloed, W.L., Van den Berg, P.J. & Arends, J. (1974). The dissolution of single crystals of hydroxyapatite in citric and lactic acids. Calcif Tissue Res 15, 19.Google Scholar
Kim, S., Oshima, Y., Tanishiro, Y. & Takayanagi, K. (2012). Study on probe current dependence of the intensity distribution in annular dark field images. Ultramicroscopy 121, 3841.CrossRefGoogle Scholar
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.CrossRefGoogle Scholar
Kwon, K.-Y., Wang, E., Chung, A., Chang, N., Saiz, E., Choe, U.-J., Koobatian, M. & Lee, S.-W. (2008). Defect induced asymmetric pit formation on hydroxyapatite. Langmuir 24, 1106311066.Google Scholar
LeGeros, R.Z. (1991). Calcium Phosphates in Oral Biology and Medicine. Basel: S. Karger, AG.Google Scholar
Liu, Y., Tsunoyama, H., Akita, T. & Tsukuda, T. (2010). Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem Commun 46, 550552.Google Scholar
Lovell, L.C. (1958). Dislocations etch pits in apatite. Acta Metall 6, 775777.Google Scholar
Marshall, A.F. & Lawless, K.R. (1981). TEM study of the central dark line in enamel crystallites. J Dent Res 602, 17731782.CrossRefGoogle Scholar
Mugnaioli, E., Reyes-Gasga, J., Kolb, U., Hémmerlé, J. & Brès, E.F. (2014). Evidence of non-centrosymmetry of human tooth hydroxyapatite crystals. Chemistry 20, 68496852.Google Scholar
Nakahara, H. & Kakei, M. (1983). Central dark line in developing enamel crystallites: An electron microscopic study. Bull Josai Dent Univ 12, 17.Google Scholar
Nakahara, H. & Kakei, M. (1984). Central dark line and carbonic anhydrase: Problems relating to crystal nucleation in enamel. In Tooth Enamel IV, Fearnhead, R.W. & Suga, S. (Eds.) pp. 4246. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Nakahara, H. (1982). Electron microscopic studies of the lattice image and the “central dark line” of crystallites in sound and carious dentin. Bull Josai Dent Univ 11, 209215.Google Scholar
Nylen, M.U., Eanes, E.D. & Omnell, K.A. (1963). Crystal growth in rat enamel. J Cell Biol 18, 109123.Google Scholar
Patel, A.R.C., Desai, C.C. & Agarwal, M.K. (1966). Cleavage and etching of prism faces of apatite. Acta Cryst 20, 796798.CrossRefGoogle Scholar
Phakey, P.P. & Leonard, J.R. (1970). Dislocations and fault surfaces in natural apatites. J Appl Cryst 3, 3844.Google Scholar
Reyes-Gasga, J., Arellano-Jimenez, M.J. & Garcia-Garcia, R. (2010). On the observation of the HAP-OCP interface by electron microscopy. Acta Microsc 19, 279284.Google Scholar
Reyes-Gasga, J. & Brès, E.F. (2015). Electron microscopy study of the human tooth enamel. The central dark line. Encyclopedia Anal Chem, a9495, p. 1–16. doi:10.1002/ 9780470027318. a9495.Google Scholar
Reyes-Gasga, J., Carbajal de la Torre, G., Brès, E.F., Gil-Chavarria, I.M., Rodriguez-Hernandez, A.G. & Garcia-Garcia, R. (2008). STEM-HAADF electron microscopy analysis of the central dark line defect of human tooth enamel crystallites. J Mater Sci Mater Med 19, 877882.Google Scholar
Reyes-Gasga, J. & García-García, R. (2002). Analysis of the electron-beam radiation damage of TEM samples in the acceleration energy in the range from 0.1 to 2 MeV using the standard theory for fast electrons. Radiat Phys Chem 64, 359367.Google Scholar
Reyes-Gasga, J., García-García, R. & Brès, E.F. (2009). Electron beam interaction, damage and reconstruction of hydroxyapatite. Physica B 404, 18671873.Google Scholar
Reyes-Gasga, J., Martínez-Piñeiro, E.L., Rodríguez-Alvarez, G., Tiznado-Orozco, G.E., García-García, R. & Bres, E.F. (2013). XRD and FTIR crystallinity índices in sound human tooth enamel and synthetic hydroxyapatite. Mater Sci Eng C 33, 45684574.CrossRefGoogle ScholarPubMed
Robinson, C., Connell, S., Kirkham, J., Shore, R. & Smith, A. (2004). Dental enamel—a biological ceramic: Regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J Mater Chem 14, 22422248.Google Scholar
Ronnholm, E. (1962). The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J Ultrastruct Res 6, 249303.Google Scholar
Stadelmann, P.A. (1987). EMS-a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145.Google Scholar
Tohda, H., Takuma, N. & Tanaka, N. (1987). Intercrystalline structure of enamel crystals affected by caries. J Dent Res 66, 16471653.CrossRefGoogle Scholar
Urban, K.W. (2008). Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506510.Google Scholar
Voegel, J.C. & Frank, R.M. (1977). Stages in the dissolution of human enamel crystals in dental caries. Calcif Tissue Res 24, 1922.Google Scholar