Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T16:51:17.497Z Has data issue: false hasContentIssue false

Aberration Correction and Electron Holography

Published online by Cambridge University Press:  05 July 2010

Hannes Lichte*
Affiliation:
Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, Germany
Martin Linck
Affiliation:
Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, Germany
Dorin Geiger
Affiliation:
Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, Germany
Michael Lehmann
Affiliation:
Institut für Optik und Atomare Physik, Technische Universitaet Berlin, Berlin, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Electron holography has been shown to allow a posteriori aberration correction. Therefore, an aberration corrector in the transmission electron microscope does not seem to be needed with electron holography to achieve atomic lateral resolution. However, to reach a signal resolution sufficient for detecting single light atoms and very small interatomic fields, the aberration corrector has turned out to be very helpful. The basic reason is the optimized use of the limited number of “coherent” electrons that are provided by the electron source, as described by the brightness. Finally, quantitative interpretation of atomic structures benefits from the holographic facilities of fine-tuning of the aberration coefficients a posteriori and from evaluating both amplitude and phase.

Type
Special Section—Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.CrossRefGoogle ScholarPubMed
Freitag, B., Knippels, G., Kujawa, S., Tiemeijer, P.C., Van Der Stam, M., Hubert, D., Kisielowski, C., Denes, P., Minor, A. & Dahmen, U. (2008). First performance measurements and application results of a new high brightness Schottky field emitter for HR-S/TEM at 80–300 kV acceleration voltage. In EMC, 1: Instrumentation and Methods, Luysberg, M., Tillmann, K. & Weirich, T. (Eds.), pp. 5556. Berlin-Heidelberg: Springer Verlag.Google Scholar
Freitag, B., Kujawa, S., Linck, M., Geiger, D., Niermann, T., Lehmann, M. & Lichte, H. (2009). Characterization of the holography performance of a Titan 80–300 with high brightness Schottky electron gun and image Cs-corrector at 300 kV acceleration voltage. Microsc Microanal 15(S2), 10981099.CrossRefGoogle Scholar
Freitag, B., Stekelenburg, M., Rignalda, J. & Hubert, D. (2007). Atomic resolution Cs-corrected HR-S/TEM from 80–300 kV. Microsc Microanal 13(S2), CD1162CD1163.Google Scholar
Gabor, D. (1948). A new microscopic principle. Nature 161, 777778.CrossRefGoogle ScholarPubMed
Geiger, D., Lichte, H., Linck, M. & Lehmann, M. (2008). Electron holography with a C s-corrected transmission electron microscope. Microsc Microanal 14, 6881.CrossRefGoogle ScholarPubMed
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47, 395405.CrossRefGoogle Scholar
Hanszen, K.-J., Morgenstern, B. & Rosenbruch, K.J. (1964). Aussagen der optischen Übertragungstheorie über Auflösung und Kontrast im elektronenmikroskopischen Bild (Findings of optical transfer-theory about resolution and contrast in an electronmicroscopic image). Z Angew Physik 16, 477486.Google Scholar
Kaiser, U. (2009). http://www.salve-project.de (detailed project description).Google Scholar
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.CrossRefGoogle Scholar
Lichte, H. (1993). Parameters for high-resolution electron holography. Ultramicroscopy 51, 1520.CrossRefGoogle Scholar
Lichte, H. (1996). Electron holography: Optimum position of the biprism in the electron microscope. Ultramicroscopy 64, 7986.CrossRefGoogle Scholar
Lichte, H. (2008). Performance limits of electron holography. Ultramicroscopy 108, 256262.CrossRefGoogle ScholarPubMed
Lichte, H., Formánek, P., Lenk, M., Linck, M., Matzeck, C., Lehmann, M. & Simon, P. (2007). Electron holography: Applications to materials questions. Annu Rev Mater Res 37, 539588.CrossRefGoogle Scholar
Lichte, H. & Lehmann, M. (2008). Electron holography—Basics and applications. Rep Prog Phys 71, 016102.CrossRefGoogle Scholar
Linck, M., Lehmann, M., Freitag, B., Kujawa, S. & Niermann, T. (2009). Applied wave optics on the atomic scale: Electron holography materials characterization in a Titan TEM. Proc MC2009, 1, pp. 1718. Graz, Austria: Verlag der TU Graz.Google Scholar
Möllenstedt, G. & Wahl, H. (1968). Elektronenholographie und Rekonstruktion mit Laserlicht (Electron holography and reconstruction with laser light). Die Naturwissenschaften 55, 340341.CrossRefGoogle Scholar
Nagayama, K. & Danev, R. (2008). Phase contrast electron microscopy: Development of thin-film phase plates and biological applications. Philos Trans Roy Soc B 363, 21532162.CrossRefGoogle ScholarPubMed
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Rose, H. (2010). Theoretical aspects of image formation in the aberration-corrected electron microscope. Ultramicroscopy 110, 488499.CrossRefGoogle ScholarPubMed
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen (About some defects of electron lenses). Z Physik 101, 593603.CrossRefGoogle Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.CrossRefGoogle Scholar
Schultheiss, K., Zach, J., Gamm, B., Dries, M., Schröder, R.R. & Gerthsen, D. (2009). New developments in the field of electrostatic phase plates in transmission electron microscopy. Proc MC2009, 1, pp. 5152. Graz, Austria: Verlag der TU Graz.Google Scholar
Wahl, H. (1975). Bildebenenholographie mit Elektronen (Image plane holography using electrons). Thesis, Universität Tübingen.Google Scholar