Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T02:34:13.136Z Has data issue: false hasContentIssue false

Microstructure, friction and wear analysis of thermoplasticbased composites with solid lubricant

Published online by Cambridge University Press:  08 February 2013

Basma Ben Difallah
Affiliation:
Laboratoire des Systèmes Électromécaniques, École Nationale d’Ingénieurs de Sfax, Route de Soukra km 3,5, BP 1173, 3038 Sfax, Tunisia Institut Supérieur des Sciences Appliquées et de la Technologie de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa, Tunisia Laboratoire FEMTO-ST, École Nationale Supérieure de Mécanique et des Microtechniques, 26 rue de l’Épitaphe, 25030 Besançon, France
Mohamed Kharrat*
Affiliation:
Laboratoire des Systèmes Électromécaniques, École Nationale d’Ingénieurs de Sfax, Route de Soukra km 3,5, BP 1173, 3038 Sfax, Tunisia Institut Préparatoire aux Études d’Ingénieurs de Sfax, Rte Menzel Chaker Km 0,5, BP 1172, 3018 Sfax, Tunisia
Maher Dammak
Affiliation:
Laboratoire des Systèmes Électromécaniques, École Nationale d’Ingénieurs de Sfax, Route de Soukra km 3,5, BP 1173, 3038 Sfax, Tunisia Institut Préparatoire aux Études d’Ingénieurs de Sfax, Rte Menzel Chaker Km 0,5, BP 1172, 3018 Sfax, Tunisia
Guy Monteil
Affiliation:
Laboratoire FEMTO-ST, École Nationale Supérieure de Mécanique et des Microtechniques, 26 rue de l’Épitaphe, 25030 Besançon, France
*
a Corresponding author:[email protected]
Get access

Abstract

Thermoplastic based composites containing different weight fractions of molybdenumdisulfide (MoS2) solid lubricant were developed by injection molding.Polymethyl methacrylate (PMMA) and polycarbonate (PC) were chosen for the thermoplasticmatrices. In order to characterize the interfacial adhesion between the matrices and thefiller, we observed the fracture morphologies of selected composites. Micrographs of thefractured surfaces showed removal of MoS2 particles by microcraking as well asthe presence of voids in the case of PMMA/MoS2 composites. These observationswere confirmed by complementary images obtained using the X-ray tomography. The additionof an appropriate coupling agent may improve the adhesion between the MoS2particles and the polymer matrix. Tribological behavior of the composites was alsoinvestigated using a ball-on-flat microtribometer with a high chromium steel ballantagonist. It was found that the addition of MoS2 particles didn’t improve thetribological performance of the composite in the case of PMMA matrix unlike the case of PCmatrix where the friction coefficient was considerably reduced.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Voss, H., Friedrich, K., The wear behavior of short fiber reinforced thermoplastics sliding against smooth steel surfaces, Wear Mater. 16 (1985) 742750 Google Scholar
Tanaka, K., Kawakami, S., Effect of various fillers on the friction and wear of PTFE-based composites, Wear 79 (1982) 221234 CrossRefGoogle Scholar
Bahadur, S., Gong, D., Anderegg, J.W., The role of copper compounds as fillers in transfer film formation and wear of nylon, Wear 154 (1992) 207223 CrossRefGoogle Scholar
Bahadur, S., The development of transfer layers and their role in polymer tribology, Wear 245 (2000) 9299 CrossRefGoogle Scholar
Briscoe, B., Yoo, L.H., Stolarski, T.A., The friction and wear of poly(tetrafluorethylene)–poly(etherketone) composites : an initial appraisal of the optimum, Wear 108 (1986) 357374 CrossRefGoogle Scholar
Hu, K.H., Wang, J., Schraube, S., Xu, Y.F., Huand, X.G., Stengler, R., Tribological properties of MoS2 nano-balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials, Wear 266 (2009) 11981207 CrossRefGoogle Scholar
Ye, Y., Chen, J., Zhou, H., An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions, Wear 266 (2009) 859864 CrossRefGoogle Scholar
La, P.Q., Xue, Q.J., Liu, W.M., A study of MoSi2–MoS2 coatings fabricated by SHS casting route, Mater. Sci. Eng. A 277 (2000) 266273 CrossRefGoogle Scholar
Bae, Y.W., Lee, W.Y., Besmann, T.M., Yust, C.S., Blau, P.J., Preparation and friction characteristics of self-lubricating TiN-MoS2 composite coatings, Mater. Sci. Eng. A 209 (1996) 372376 CrossRefGoogle Scholar
Hiraoka, N., Wear life mechanism of journal bearings with bonded MoS2 film lubricants in air and vacuum, Wear 249 (2002) 10141020 CrossRefGoogle Scholar
Langlade, C., Vannes, B., Taillandier, M., Pierantoni, M., Fretting behavior of low-friction coatings : contribution to industrial selection, Tribol. Int. 34 (2001) 4956 CrossRefGoogle Scholar
Carton, J.F., Vannes, A.B., Zambelli, G., Vincent, L., An investigation of the fretting behaviour of low friction coatings on steel, Tribol. Int. 29 (1996) 445455 CrossRefGoogle Scholar
Beall, C.J., Solid film lubricants, Metal Finishing 98 (2000) 513517 CrossRefGoogle Scholar
Miyoshi, K., Durability evaluation of selected solid lubricating films, Wear 251 (2001) 10611067 CrossRefGoogle Scholar
Gadow, R., Scherer, D., Composite coatings with dry lubrication ability on light metal substrates, Surface and Coatings Technology 151 (2002) 471477 CrossRefGoogle Scholar
Xu, J., Zhu, M.H., Zhou, Z.R., Kapsa, Ph., Vincent, L., An investigation on fretting wear life of bonded MoS2 solid lubricant coatings in complex condition, Wear 255 (2003) 253358 CrossRefGoogle Scholar
Fridrici, V., Fouvry, S., Kapsa, P., Perruchaut, P., Impact of contact size and geometry on the lifetime of a solid lubricant, Wear 255 (2003) 875882 CrossRefGoogle Scholar
Bahadur, S., Gong, D., The action of fillers in the modification of the tribological behavior of polymers, Wear 158 (1992) 4158 CrossRefGoogle Scholar
Pettarin, V., Churruca, M.J., Felhös, D., Karger-Kocsis, J., Frontini, P.M., Changes in tribological performance of high molecular weight high density polyethylene induced by the addition of molybdenum disulphide particles, Wear 269 (2010) 3145 CrossRefGoogle Scholar
Dangsheng, X., Lubrication behavior of Ni–Cr-based alloys containing MoS2 at high temperature, Wear 251 (2001) 10941099 CrossRefGoogle Scholar
Aouadi, S.M., Paudel, Y., Simonson, W.J., Ge, Q., Kohli, P., Muratore, C., Voevodin, A.A., Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content, Surf. Coatings Technol. 203 (2009) 13041309 CrossRefGoogle Scholar
Bijwe, J., John Rajesh, J., Jeyakumar, A., Ghosh, A., Tewari, U.S., Influence of solid lubricants and fibre reinforcement on wear behaviour of polyethersulphone, Tribol. Int. 33 (2000) 697706 CrossRefGoogle Scholar
Bijwe, J., Logani, C.M., Tewari, U.S., Influence of fillers and fibre reinforcement on abrasive wear resistance of some polymeric composites, Wear 138 (1990) 7792 CrossRefGoogle Scholar
Liu, W., Huang, C., Gao, L., Wang, J., Dang, H., Study of the friction and wear properties of MoS2-filled nylon 6, Wear 151 (1991) 111118 Google Scholar
Jin, Z., Pramoda, K.P., Xu, G., Goh, S.H., Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites, Chem. Phys. Lett. 337 (2001) 4347 CrossRefGoogle Scholar
Brown, R.P., Fractography and failure mechanisms of polymers and composites : By A. C. Roulin-Moloney. Elsevier Science Publishers, London, 1989, pp 540 + xix. ISBN 1-85166-296-0, Polymer Testing 10 (1991) 79 CrossRefGoogle Scholar
G.E. Morris, Determining fracture directions and fracture origins on failed graphite/epoxy surfaces in non-destructive evaluation and flow criticality for composite materials, In : R.B. Pipes, Ed., ASTM STP, American Society for Testing and Materials STP 696, Philadelphia, 1979, pp. 274–297
Purslow, D., Some fundamental aspects of composites Fractography, Compos. 12 (1981) 241247 CrossRefGoogle Scholar
Vlassenbroeck, J., Diericka, M., Masschaele, B., Cnudde, V., Van Hoorebeke, L., Jacobs, P., Software tools for quantification of X-ray microtomography at the UGCT, Nuclear Instruments and Methods in Physics Research A 580 (2007) 442445 CrossRefGoogle Scholar
Premalal, Hattotuwa G.B., Ismail, H., Baharin, A., Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites, Polymer Testing 21 (2002) 833839 CrossRefGoogle Scholar
Othman, N., Ismail, H., Mariatti, M., Effect of compatibilisers on mechanical and thermal properties of bentonite filled polypropylene composites, Polym. Degradation and Stability 91 (2006) 17611774 CrossRefGoogle Scholar
C.C. Chamis, Composite Materials, ed. by E.P. Plueddemann, New York, 6, 1974
Phueakbuakhao, N., Prissanaroon-Ouajai, W., Kreua-Ongarjnukool, N., Effect of coupling agents on mechanical properties and morphology of CaCO3-filled Recycled high density polyethylene, J. Metals Mat. Minerals 18 (2008) 131135 Google Scholar
Yang, K., Yang, Q., Li, G., Sun, Y., Feng, D., Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites, J. Mater. Lett. 60 (2006) 805809 CrossRefGoogle Scholar
Ben Difallah, B., Kharrat, M., Dammak, M., Monteil, G., Mechanical and tribological response of ABS polymer matrix filled with graphite powder, Materials and Design 34 (2012) 782787 CrossRefGoogle Scholar
Zhang, X.-R., Pei, X.-Q., Wang, Q.-H., Friction and wear studies of polyimide composites filled with short carbon fibers and graphite and micro SiO2, Materials and Design 30 (2009) 44144420 CrossRefGoogle Scholar