Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T07:51:10.588Z Has data issue: false hasContentIssue false

Investigation of interphase effects on mechanical behaviorsof carbon nanocone-based composites

Published online by Cambridge University Press:  20 June 2014

Mir Masoud Seyyed Fakhrabadi*
Affiliation:
Department of Mechanical Engineering, College of Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
Navid Khani
Affiliation:
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
*
a Corresponding author: [email protected]
Get access

Abstract

This paper presents the mechanical properties of carbon nanocone-based polymer composites in the presence of interphase layer. Some representative volume elements are considered to study the elastic behaviors of the transversely isotropic nanocomposite and the effects of the interphase layer on four of five independent constants related to this model. The finite element method is applied to obtain the results for different elastic moduli and thicknesses of the matrix.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Su, F.H., Zhang, Z.Z., Wang, K., Jiang, W., Men, X.H., Liu, W.M., Friction and wear properties of carbon fabric composites filled with nano-Al2O3 and nano-Si3N4, J. Compos. Part A: Appl. Sci. Manufact. 37 (2006) 13511357 CrossRefGoogle Scholar
Huang, X., Netravali, A., Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles, J. Compos. Sci. Tech. 67 (2007) 20052014 CrossRefGoogle Scholar
Su, F.H., Zhang, Z.Z., Liu, W.M., Tribological and mechanical properties of Nomex fabric composites filled with polyfluo 150 wax and nano-SiO2, Compos. Sci. Tech. 67 (2007) 102110 CrossRefGoogle Scholar
Taha, M.M.R., Colak-Altunc, A.B., Al-Haik, M., A multi-objective optimization approach for design of blast-resistant composite laminates using carbon nanotubes, J. Compos. B 40 (2009) 522529 CrossRefGoogle Scholar
Liu, Y.J., Chen, X.L., Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element,J. Mech. Mater. 35 (2003) 6981 CrossRefGoogle Scholar
Chen, X.L., Liu, Y.J., Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, J. Comput. Mater. Sci. 29 (2004) 111 CrossRefGoogle Scholar
Shokrieh, M.M., Rafiee, R., Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites, J. Compos. Struct. 92 (2010) 24152420 CrossRefGoogle Scholar
Mokashi, V.V., Qian, D., Liu, Y., A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics, J. Compos. Sci. Tech. 67 (2007) 530540 CrossRefGoogle Scholar
Formica, G., Lacarbonara, W., Alessi, R., Vibrations of carbon nanotube-reinforced composites J. Sound Vib. 329 (2010) 18751889 CrossRefGoogle Scholar
Ke, L.L., Yang, J., Kitipornchai, S., Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, J. Compos. Struct. 92 (2010) 676683 CrossRefGoogle Scholar
Fukuchi, K., Sasaki, K., Katagiri, K., Imanishi, T., Kakitsuji, A., Aluminium based high thermal conductive composite containing CNT and VGCF-deformation dependence of thermal conductivity, Procedia Eng. 10 (2011) 912917 CrossRefGoogle Scholar
Lopes, P.E., Hattum, F.V., Pereira, C.M.C., Novoa, P.J.R.O., Forero, S., Hepp, F., Pambaguian, L., High CNT content composites with CNT Buckypaper and epoxy resin matrix: Impregnation behavior composite production and characterization, Compos. Struct. 92 (2010) 12911298 CrossRefGoogle Scholar
Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R., C60: a new form of carbon, Nature 347 (1990) 354358 CrossRefGoogle Scholar
Jing, Du, Pan, Zeng, Molecular vibrational modes of C60 and C70 via finite element method, Eur. J. Mech. A/ Solids. 28 (2009) 948954 CrossRefGoogle Scholar
Khalid, F.A., Beffort, O., Klotz, U.E., Keller, B.A., Gasser, P., Vaucher, S., J. Acta Mat. 51 (2003) 4575 CrossRef
14. Nasibulin, A.G., Pikhitsa, P.V., Jiang, H., Brown, D.P., Krashninnikov, A.V., Anisimov, A.S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G.N., Hassanein, A., Shandakov, S.D., Lolli, G., Resasco, D.E., Chio, M., Nek, D.T., Kauppinen, E.I., A novel hybrid carbon material, Nat. Nanotech. 2 (2007) 156161 CrossRefGoogle ScholarPubMed
Wu, X., Zeng, X.C., First-Principles Study of a Carbon Nanobud, ACS Nano. 2 (2008) 14591465 CrossRefGoogle Scholar
Momeni, K., Yassar, R.S., Stress distribution on a single-walled carbon nanohorn embedded in an epoxy matrix nanocomposite under axial force, J. Comput. Theor. Nanosci. 7 (2010) 17 CrossRefGoogle Scholar
Golestanian, H., Shojaie, M., Numerical characterization of CNT-based polymer composites considering interface effects, Comput. Mater. Sci. 50 (2010) 731736 CrossRefGoogle Scholar
Hernandez-Perez, A., Aviles, F., Modeling the influence of interphase on the elastic properties of carbon nanotube composites, Comput. Mater. Sci. 47 (2010) 926933 CrossRefGoogle Scholar
Montazeri, A., 1 R. Naghdabadi, Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling, J. Appl. Polymer Sci. 117 (2010) 361367 Google Scholar
Hu, N., Fukunaga, H., Lu, C., Kameyama, M., Yan, B., Prediction of elastic properties of carbon nanotube-reinforced composites, Proc. R. Soc. 461 (2005) 16851710 CrossRefGoogle Scholar
Joshi, P., Upadhyay, S.H., Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite, Comput. Mater. Sci. 87 (2014) 267273 CrossRefGoogle Scholar
Lu, P., Leong, Y.W., Pallathadka, P.K., He, C.B., Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model–Theory and explicit expressions, Int. J. Eng. Sci. 73 (2013) 3355 CrossRefGoogle Scholar
Spanos, K.N., Georgantzinos, S.K., Anifantis, N.K., Investigation of stress transfer in carbon nanotube reinforced composites using a multi-scale finite element approach, Compos. Part B: Eng. 63 (2014) 8593 CrossRefGoogle Scholar
R. Rafiee, R. Pourazizi, Influence of CNT functionalization on the interphase region between CNT and polymer, Comput. Mater. Sci. (2014) in press
Kumar, P., Srinivas, J., Numerical evaluation of effective elastic properties of CNT-reinforced polymers for interphase effects, Comput. Mater. Sci. 88 (2014) 139144CrossRefGoogle Scholar