Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T10:00:17.397Z Has data issue: false hasContentIssue false

The geometry of conformal measures for parabolic rational maps

Published online by Cambridge University Press:  01 January 2000

B. O. STRATMANN
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, Scotland; e-mail: [email protected]
M. URBAŃSKI
Affiliation:
Department of Mathematics, University of North Texas, Denton, TX 76203-5118, U.S.A. e-mail: [email protected]

Abstract

We study the h-conformal measure for parabolic rational maps, where h denotes the Hausdorff dimension of the associated Julia sets. We derive a formula which describes in a uniform way the scaling of this measure at arbitrary elements of the Julia set. Furthermore, we establish the Khintchine Limit Law for parabolic rational maps (the analogue of the ‘logarithmic law for geodesics’ in the theory of Kleinian groups) and show that this law provides some efficient control for the fluctuation of the h-conformal measure. We then show that these results lead to some refinements of the description of this measure in terms of Hausdorff and packing measures with respect to some gauge functions. Also, we derive a simple proof of the fact that the Julia set of a parabolic rational map is uniformly perfect. Finally, we obtain that the conformal measure is a regular doubling measure, we show that its Renyi dimension and its information dimension are equal to h and we compute its logarithmic index.

Type
Research Article
Copyright
The Cambridge Philosophical Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)