Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T09:00:51.774Z Has data issue: false hasContentIssue false

Statistics of the simple cubic lattice

Published online by Cambridge University Press:  24 October 2008

A. J. Wakefield
Affiliation:
Clarendon LaboratoryOxford

Extract

Both the Ising theory of ferromagnetism and the theory of regular solutions are concerned with systems arranged on a lattice and make the assumption that each system interacts only with its nearest neighbours. Mathematically, there is a close parallel between the two problems (see, for instance, Rushbrooke (1)). In the first half of this present paper the partition functions for these two problems are examined in some detail. Power series expansions of the partition function of the Ising model, valid for low and high temperatures, are obtained. The terms obtained in the power series have been analysed and approximate numerical results obtained. It is hoped to publish these in a second paper.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Rushbrooke, G. S.Nuovo Cimento, Supplement no. 2 to vol. 6, series ix (1949), 251.CrossRefGoogle Scholar
(2)Ising, E.Z. Phys. 31 (1925), 253.CrossRefGoogle Scholar
(3)Kramers, H. A. and Wannier, G. H.Phys. Rev. 60 (1941), 252, 263.CrossRefGoogle Scholar
(4)Domb, C.Proc. Roy. Soc. A, 199 (1949), 199.Google Scholar
(5)Peierls, R.Proc. Cambridge Phil. Soc. 32 (1936), 477.CrossRefGoogle Scholar
(6)Van der Waerden, B. L.Z. Phys. 118 (1941), 473.CrossRefGoogle Scholar
(7)Rushbrooke, G. S.Proc. Roy. Soc. A, 166 (1938), 296.Google Scholar
(8)Lassettre, E. N. and Howe, J. P.J. Chem. Phys. 9 (1941), 747, 801.CrossRefGoogle Scholar
(9)Chang, T. S.Proc. Cambridge Phil. Soc. 35 (1938), 265.CrossRefGoogle Scholar
(10)Kirkwood, J. G.J. Phys. Chem. 43 (1939), 97.CrossRefGoogle Scholar
(11)Fuchs, K.Proc. Roy. Soc. A, 179 (1942), 340.Google Scholar
(12)Ashkin, J. and Lamb, W. E.Phys. Rev. 64 (1943), 159.CrossRefGoogle Scholar
(13)Ogichu, T.Phys. Rev. 76 (1949), 1001.CrossRefGoogle Scholar
(14)Opechowski, W.Physica, 4 (1938), 186.Google Scholar
(15)Wannier, G. H.Rev. Mod. Phys. 17 (1945), 50.CrossRefGoogle Scholar
(16)Ter Haar, D.Phys. Rev. 76 (1949), 176 (L).CrossRefGoogle Scholar
(17)Kirkwood, J. G.J. Chem. Phys. 6 (1938), 130.Google Scholar
(18)Chang, T. S.J. Chem. Phys. 9 (1941), 169.CrossRefGoogle Scholar
(19)Van Vleck, J. H.J. Chem. Phys. 9 (1941), 85.CrossRefGoogle Scholar
(20)Nix, F. C. and Shockley, W.Rev. Mod. Phys. 10 (1938), 1.CrossRefGoogle Scholar
(21)Bragg, W. L. and Williams, E. J.Proc. Roy. Soc. A, 145 (1934), 649.Google Scholar
(22)Bethe, H. A.Proc. Roy. Soc. A, 150 (1935), 552.Google Scholar
(23)Bethe, H. A. and Kirkwood, J. G.J. Chem. Phys. 7 (1939), 578.CrossRefGoogle Scholar
(24)Trefftz, E.Z. Phys. 127 (1950), 371.CrossRefGoogle Scholar