No CrossRef data available.
Some expansions in products of hypergeometric functions
Published online by Cambridge University Press: 24 October 2008
Extract
1. Making use of the familiar abbreviation
let us adopt a contracted notation for the generalized hypergeometric function AFB(x) and write
where (a) denotes the sequence of parameters a1, a2,…, aA. It will be assumed throughout the present paper that there are A of the ‘a’ parameters, A′ of the ‘a′’ parameters, and so on. Thus [(a)]m is to be interpreted as
with similar interpretations for [(a′)]m, etc.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 65 , Issue 3 , May 1969 , pp. 721 - 724
- Copyright
- Copyright © Cambridge Philosophical Society 1969
References
REFERENCES
(1)Appell, P. and Kampé de, Feriet. Functions hypergéométriques et hypersphériques (Paris, 1926).Google Scholar
(2)Bailey, W. N.Some expansions in Bessel functions involving Appell's function F4. Quart. J. of Math. Oxford Ser. 6 (1935), 233–238.CrossRefGoogle Scholar
(3)Burchnall, J. L. and Chaundy, W. A.Expansions of Appell's double hypergeometric functions, II. Quart. J. Math. Oxford Ser. 12 (1941), 112–128.CrossRefGoogle Scholar
(4)Cablitz, L. and Al-Salam, W. A.Some functions associated with Bessel functions. J. Math. Mech. 12 (1963), 911–933.Google Scholar
(6)Fox, C.The expansion of the hypergeometric function in terms of similar series. Proc. Lond. Math. Soc. 26 (1927), 201–210.CrossRefGoogle Scholar
(7)Rice, S. O. On contour integrals for the product of Bessel functions. Quart. J. Math. Oxford Ser. 6 (1935), 52–54.Google Scholar
(8)Slater, L. J.Expansions of generalized Whittaker functions. Proc. Cambridge Philos. Soc. 50 (1954), 628–631.CrossRefGoogle Scholar
(10)Srivastava, H. M.Some expansions of generalized Whittaker functions. Proc. Cambridge Philos. Soc. 61 (1965), 893–896.CrossRefGoogle Scholar
(11)Srivastava, H. M.Some expansions in products of hypergeometric functions. Proc. Cambridge Philos. Soc. 62 (1966), 245–247.CrossRefGoogle Scholar
(12)Srivastava, H. M.Some expansions in Bessel functions involving generalized hypergeometric functions. Proc. Nat. Acad. of Sci. India 34 (1966), 145–151.Google Scholar
(13)Srivastava, H. M.Generalized Neumann expansions involving generalized hypergeometric functions. Proc. Cambridge Philos. Soc. 63 (1967), 425–429.CrossRefGoogle Scholar
(14)Srivastava, H. M.Some expansions associated with Bessel and hypergeometric functions. Rend. Sem. Mat. Univ. Padova (1967), 390–396.Google Scholar
(16)Wimp, J. and Fields, J. L.Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (1961), 390–396.Google Scholar
(17)Wimp, J. and Luke, Y. L.Expansion formulas for generalized hypergeometric functions. Bend. Circ. Mat. Palermo 11 (1962), 351–366.CrossRefGoogle Scholar