Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T18:51:48.075Z Has data issue: false hasContentIssue false

Quantum stochastic integration and quantum stochastic differential equations

Published online by Cambridge University Press:  24 October 2008

Chris Barnett
Affiliation:
Department of Mathematics, Imperial College of Science, Technology and Medicine, London SW7 2BZ
Stanisław Goldstein
Affiliation:
Institute of Mathematics, Łódź University, ul. Banacha 22, 90-238 Łódź, Poland
Ivan Wilde
Affiliation:
Department of Mathematics, King's College, Strand, London WC2R 2LS

Abstract

Quantum stochastic integrals are constructed using the non-commutative Lp-space theory of Haagerup. The existence and uniqueness of the solution to quantum stochastic differential equations driven by quasi-Wiener noises, or noises satisfying generalized standing hypotheses, is established as is the Markov behaviour of the solution. Various examples of the theory are discussed, and quantum Ornstein-Uhlenbeck processes are obtained as explicit solutions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Araki, H.. Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule. Pacific J. Math. 50 (1974), 309354.CrossRefGoogle Scholar
[2]Barnett, C., Streater, R. F. and Wilde, I. F.. The Itô-Clifford integral. J. Funct. Analysis 48 (1982), 172212.CrossRefGoogle Scholar
[3]Barnett, C., Streater, R. F. and Wilde, I. F.. The Itô-Clifford integral II. Stochastic differential equations. J. London Math. Soc. (2) 27 (1983), 373384.CrossRefGoogle Scholar
[4]Barnett, C., Streater, R. F. and Wilde, I. F.. The Itô-Clifford integral III. The Markov property of solutions to stochastic differential equations. Commun. Math. Phys. 89 (1983), 1317.CrossRefGoogle Scholar
[5]Barnett, C., Streater, R. F. and Wilde, I. F.. Quasi-free quantum stochastic integrals for the CAR and CCR. J. Funct. Analysis 52 (1983), 1947.CrossRefGoogle Scholar
[6]Barnett, C., Streater, R. F. and Wilde, I. F.. The Itô-Clifford integral IV. A Radon-Nikodym theorem and bracket processes. J. Operator Theory 11 (1984), 255271.Google Scholar
[7]Barnett, C., Streater, R. F. and Wilde, I. F.. Quantum stochastic integrals under standing hypotheses. J. Math. Analysis and Applications 127 (1987), 181192.CrossRefGoogle Scholar
[8]Barnett, C. and Wilde, I. F.. Quantum Doob-Meyer decompositions. J. Operator Theory 20 (1988), 133164.Google Scholar
[9]Dell'Antonio, G. F.. Structure of the algebras of some free systems. Commun. Math. Phys. 9 (1968), 81117.CrossRefGoogle Scholar
[10]Dixmier, J.. Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France 81 (1953), 939.Google Scholar
[11]Goldstein, S.. Conditional expectation and stochastic integrals in non-commutative Lp spaces, preprint.Google Scholar
[12]Haagerup, U.. The standard form of von Neumann algebras. Math. Scand. 37 (1975), 271283.CrossRefGoogle Scholar
[13]Haagerup, U.. Lp-spaces associated with an arbitrary von Neumann algebra. Algèbres d'opérateurs et leur application en physique mathématique, Colloques internationaux du CNRS, No. 274, Marseilles 20–24 juin 1977, pp. 175184, Édition du CNRS, Paris 1979.Google Scholar
[14]Haagerup, U.. Operator valued weights in von Neumann algebras I. J. Funct. Analysis 32 (1979), 175206.CrossRefGoogle Scholar
[15]Hepp, K.. Théorie de la renormalisation. Lecture Notes in Physics No. 2 (Springer Verlag, 1969).Google Scholar
[16]Hudson, R. L. and Lindsay, J. M.. A non-commutative martingale representation theorem for non-Fock quantum Brownian motion. J. Funct. Analysis 61 (1985), 202221.CrossRefGoogle Scholar
[17]Kunze, R. A.. Lp Fourier transforms on locally compact unimodular groups. Trans. Amer. Math. Soc. 89 (1958), 519540.Google Scholar
[18]Lindsay, J. M. and Wilde, I. F.. On non-Fock boson stochastic integrals. J. Funct. Analysis 65 (1986), 7682.CrossRefGoogle Scholar
[19]McSnane, E. J.. Stochastic calculus and stochastic models (Academic Press, 1974).Google Scholar
[20]Nelson, E.. Dynamical theories of Brownian motion (Princeton University Press, 1967).CrossRefGoogle Scholar
[21]Nelson, E.. Notes on non-commutative integration. J. Funct. Analysis 15 (1974), 103116.CrossRefGoogle Scholar
[22]Segal, I. E.. A non-commutative extension of abstract integration. Ann. of Math. 57 (1953), 401457; 58 (1953), 595596.CrossRefGoogle Scholar
[23]Takesaki, M.. Conditional expectation in von Neumann algebra. J. Funct. Analysis 9 (1972), 306321.CrossRefGoogle Scholar
[24]Takesaki, M.. Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math. 131 (1973), 249308.CrossRefGoogle Scholar
[25]Terp, M.. Lp-spaces associated with von Neumann algebras. Notes, K0benhavns Universitet, Matematisk Institut, Rapport No. 3a/3b, 1981.Google Scholar
[26]Wilde, I. F.. Quasi-free stochastic integral representation theorems over the CCR. Math. Proc. Camb. Phil. Soc. 104 (1988), 383398.CrossRefGoogle Scholar
[27]Yeadon, F. J.. Non-commutative Lp-spaces. Math. Proc. Camb. Phil. Soc. 77 (1975), 91102.CrossRefGoogle Scholar