Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T20:53:32.870Z Has data issue: false hasContentIssue false

On the Feynman path integral in q, , p space

Published online by Cambridge University Press:  24 October 2008

N. L. Balazs
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Abstract

An alternative definition is proposed for the kernel used by Feynman. This definition involves a functional integration in a q, , p space, treating these variables as independent. The equivalence of this definition to the Feynman one and to the one using the variables q, p is exhibited.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Feynman, R. P.Rev. Modern Phys. 20 (1948), 367.Google Scholar
(2)Tobocman, W.Nuovo Cimento 3 (1956), 1213.CrossRefGoogle Scholar
(3)Davies, H.Proc. Cambridge Philos. Soc. 59 (1963), 147.Google Scholar
(4)Dirac, P. A. M.Canad. J. Math. 2 (1950), 129.Google Scholar
(5)Nordheim, L. and Fuss, E. Die Hamilton-Jacobische Theorie der Dynamik. Hand buch der Physik (ed. Geiger, H. and Scheel, K.), Band V, 92 (Springer-Verlag; Berlin, 1927).Google Scholar