Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T08:19:11.772Z Has data issue: false hasContentIssue false

On tamely ramified pro-p-extensions over ${\mathbb Z}_p$-extensions of ${\mathbb Q}$

Published online by Cambridge University Press:  20 November 2013

TSUYOSHI ITOH
Affiliation:
Division of Mathematics, Education Center, Faculty of Social Systems Science, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan. e-mail: [email protected]
YASUSHI MIZUSAWA
Affiliation:
Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan. e-mail: [email protected]

Abstract

For an odd prime number p and a finite set S of prime numbers congruent to 1 modulo p, we consider the Galois group of the maximal pro-p-extension unramified outside S over the ${\mathbb Z}_p$-extension of the rational number field. In this paper, we classify all S such that the Galois group is a metacyclic pro-p group.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Blackburn, N.On prime-power groups with two generators. Proc. Camb. Phil. Soc. 54 (1958), 327337.CrossRefGoogle Scholar
[2]Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D.Analytic Pro-p Groups (Second edition). Cambridge Studies in Advanced Math. 61 (Cambridge University Press, Cambridge, 1999).Google Scholar
[3]Fukuda, T.Remarks on ${\mathbb Z}_p$-extensions of number fields. Proc. Japan Acad. Ser. A 70 (1994), 264266.CrossRefGoogle Scholar
[4]Greenberg, R.On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98 (1976), no. 1, 263284.CrossRefGoogle Scholar
[5]Itoh, T., Mizusawa, Y. and Ozaki, M.On the ${\mathbb Z}_p$-ranks of tamely ramified Iwasawa modules. Int. J. Number Theory 9 (2013), no. 6, 14911503.CrossRefGoogle Scholar
[6]Itoh, T. On tamely ramified Iwasawa modules for the cyclotomic ${\mathbb Z}_p$-extension of abelian fields. arXiv:1108.4266, (2012). To appear in Osaka J. Math.Google Scholar
[7]Khare, C. and Wintenberger, J.–P.Ramification in Iwasawa theory and splitting conjectures. Int. Math. Res. Not. (2012), DOI: 10.1093/imrn/rns217.Google Scholar
[8]Koch, H.Galois Theory of p-Extensions (Springer-Verlag, Berlin, 2002).Google Scholar
[9]Koch, H.l-Erweiterungen mit vorgegebenen Verzweigungsstellen. J. Reine Angew. Math. 219 (1965), 3061.CrossRefGoogle Scholar
[10]Koch, H.Über beschränkte Gruppen. J. Algebra 3 (1966) 206224.CrossRefGoogle Scholar
[11]Kurihara, M.Remarks on the λp-invariants of cyclic fields of degree p. Acta Arith. 116 (2005), no. 3, 199216.Google Scholar
[12]Mizusawa, Y. and Ozaki, M.On tame pro-p Galois groups over basic ${\mathbb Z}_p$-extensions. Math. Z. 273 (2012), no. 3, 11611173.CrossRefGoogle Scholar
[13]Neukirch, J., Schmidt, A. and Wingberg, K.Cohomology of Number Fields (Second edition). Grundlehren der Mathematischen Wissenschaften 323 (Springer-Verlag, Berlin, 2008).Google Scholar
[14]Ozaki, M. and Yamamoto, G.Iwasawa λ3-invariants of certain cubic fields. Acta Arith. 97 (2001), no. 4, 387398.CrossRefGoogle Scholar
[15]Ozaki, M.Non-abelian Iwasawa theory of ${\mathbb Z}_p$-extensions. J. Reine Angew. Math. 602 (2007), 5994.Google Scholar
[16]The Pari Group PARI/GP. Bordeaux (2008). http://pari.math.u-bordeaux.fr/.Google Scholar
[17]Salle, L.On maximal tamely ramified pro-2-extensions over the cyclotomic ${\mathbb Z}_2$-extension of an imaginary quadratic field. Osaka J. Math. 47 (2010), no. 4, 921942.Google Scholar
[18]Sharifi, R. T.The reciprocity conjecture of Khare–Wintenberger. Int. Math. Res. Not. (2012), DOI: 10.1093/imrn/rns259Google Scholar
[19]Taya, H.On p-adic zeta functions and ${\mathbf Z}_p$-extensions of certain totally real number fields. Tohoku Math. J. (2) 51 (1999), no. 1, 2133.CrossRefGoogle Scholar
[20]Washington, L. C.Introduction to Cyclotomic Fields (Second edition). Graduate Texts in Math. vol. 83 (Springer, 1997).Google Scholar
[21]Yamamoto, G.On the vanishing of Iwasawa invariants of absolutely abelian p-extensions. Acta. Arith. 94 (2000), no. 4, 365371.Google Scholar