Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T08:13:00.281Z Has data issue: false hasContentIssue false

The integration of generalized hypergeometric functions

Published online by Cambridge University Press:  24 October 2008

H. M. Srivastava
Affiliation:
Department of Mathematics, The University, Jodhpur, India

Extract

In the usual notation for generalized hypergeometric functions we let

where

and (a) denotes the sequence of parameters

Throughout the present paper we shall suppose that there are A of the a parameters, Bof the b parameters, and so on. Thus ((a))m is to be interpreted as

and similar interpretations hold for ((b))m, etc.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Appell, P. et Kampé De Fériet, J.Fonctions hypergéométriques et hypersphériques (Gauthier-Villars; Paris, 1926).Google Scholar
(2)Bailey, W. N.Some infinite integrals involving Bessel functions. Proc. London Math. Soc. 40 (1936), 3748.CrossRefGoogle Scholar
(3)Bailey, W. N.Some infinite integrals involving Bessel functions. II. J. London Math. Soc. 11 (1936), 1620.CrossRefGoogle Scholar
(4)Burchnall, J. L. and Chaundy, T. W.Expansions of Appell's double hypergeometric functions. II. Quart. J. Math. (Oxford), 12 (1941), 112128.CrossRefGoogle Scholar
(5)Edwards, J.A treatise on the integral calculus, vol. II (Chelsea; New York, 1954).Google Scholar
(6)Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G.Higher transcendental functions, vol. II (McGraw-Hill; New York, 1953).Google Scholar
(7)Slater, L. J.The integration of hypergeometric functions. Proc. Cambridge Philos. Soc. 51 (1955), 288296.CrossRefGoogle Scholar
(8)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(9)Srivastava, H. M.Some expansions in products of hypergeometric functions. Proc. Cambridge Philos. Soc. 62 (1966), 245247.CrossRefGoogle Scholar
(10)Watson, G. N.Theory of Bessel functions (Cambridge, 1944).Google Scholar