Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T13:28:18.512Z Has data issue: false hasContentIssue false

The commuting inverses of a square matrix

Published online by Cambridge University Press:  24 October 2008

M. J. Englefield
Affiliation:
University College of North Wales, Bangor, Caerns

Extract

An inverse AI for an arbitrary matrix A was first given by Moore (4). Since the application to solution of linear equations only depended on the property A AI A = A, Bjerhammar (2) used this equation to define the set of generalized inverses AI. If A is regular, then only the regular inverse A−1 satisfies this definition. If A is a generalized inverse of AI, so that AI = AI AAI, then AI is a reciprocal inverse.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Afriat, S. N.Proc. Cambridge Philos. Soc. 55 (1959), 51.CrossRefGoogle Scholar
(2)Bjerhammar, A.A generalized matrix algebra. Kungl. Tekniska Hogskolans Handlingar, no. 124 (1958).Google Scholar
(3)Giorgi, G.Atti Accad. Naz. Lincei, VI 8 (1928), 3. Or see MacDuffee, The theory of matrices, p. 100 (New York, 1946).Google Scholar
(4)Moore, E. M.Bull. Amer. Math. Soc. 26 (1920), 394.Google Scholar
(5)Penrose, R.Proc. Cambridge Philos. Soc. 51 (1955), 406.CrossRefGoogle Scholar
(6)Penrose, R.Proc. Cambridge Philos. Soc. 52 (1956), 18.CrossRefGoogle Scholar
(7)Wedderburn, J. H. M.Lectures on matrices. (Amer. Math. Soc. Colloquium Publications, vol. XVII, 1934), pp. 2931.Google Scholar