Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T11:41:14.314Z Has data issue: false hasContentIssue false

Character sums for primitive root densities

Published online by Cambridge University Press:  05 November 2014

H. W. LENSTRA JR.
Affiliation:
Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Netherlands. e-mail: [email protected], [email protected]
P. STEVENHAGEN
Affiliation:
Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, The Netherlands. e-mail: [email protected], [email protected]
P. MOREE
Affiliation:
Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany. e-mail: [email protected]

Abstract

It follows from the work of Artin and Hooley that, under assumption of the generalised Riemann hypothesis, the density of the set of primes q for which a given non-zero rational number r is a primitive root modulo q can be written as an infinite product ∏p δp of local factors δp reflecting the degree of the splitting field of Xp - r at the primes p, multiplied by a somewhat complicated factor that corrects for the ‘entanglement’ of these splitting fields.

We show how the correction factors arising in Artin's original primitive root problem and several of its generalisations can be interpreted as character sums describing the nature of the entanglement. The resulting description in terms of local contributions is so transparent that it greatly facilitates explicit computations, and naturally leads to non-vanishing criteria for the correction factors.

The method not only applies in the setting of Galois representations of the multiplicative group underlying Artin's conjecture, but also in the GL2-setting arising for elliptic curves. As an application, we compute the density of the set of primes of cyclic reduction for Serre curves.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brau, J.. Ph.D. thesis. Universiteit Leiden, https://openaccess.leidenuniv.nl, to appear.Google Scholar
[2]Cangelmi, L. and Pappalardi, F.. On the r-rank Artin conjecture, II. J. Number Theory 75 (1999), 120132.CrossRefGoogle Scholar
[3]Hooley, C.. On Artin's conjecture for primitive roots. J. Reine Angew. Math. 225 (1967), 209220.Google Scholar
[4]Javanpeykar, A.. Radical Galois groups and cohomology. Master's thesis. Universiteit Leiden, http://www.math.leidenuniv.nl/en/theses/377. (2013).Google Scholar
[5]Jones, N.. Almost all elliptic curves are Serre curves. Trans. Amer. Math. Soc. 362 (2010), no. 3, 15471570.Google Scholar
[6]Lenstra, H. W. Jr., On Artin's conjecture and Euclid's algorithm in global fields. Invent. Math. 42 (1977), 201224.CrossRefGoogle Scholar
[7]Lenstra, H. W. Jr., Entangled radicals. AMS Colloquium Lectures (San Antonio, 2006), http://www.math.leidenuniv.nl/~hwl/papers/rad.pdf.Google Scholar
[8]Matthews, K. R.. A generalisation of Artin's conjecture for primitive roots. Acta Arith. 29 (1976), 113146.Google Scholar
[9]Moree, P.. On primes in arithmetic progression having a prescribed primitive root. J. Number Theory 78 (1999), 8598.Google Scholar
[10]Moree, P.. On primes in arithmetic progression having a prescribed primitive root II. Funct. Approx. Comment. Math. 39 (2008), 133144.CrossRefGoogle Scholar
[11]Moree, P. and Stevenhagen, P.. A two-variable Artin conjecture. J. Number Theory 85 (2000), 291304.Google Scholar
[12]Moree, P. and Stevenhagen, P.. Computing higher rank primitive root densities. Acta Arithmetica 163 (2014), no. 1, 1532.Google Scholar
[13]Palenstijn, W. J.. Radicals in arithmetic. Ph.D. thesis. Universiteit Leiden, https://openaccess.leidenuniv.nl (2014).Google Scholar
[14]Ribes, L. and Zalesskii, P.. Profinite groups, Ergebnisse der Mathematik, vol. 40, (Springer, 2000).Google Scholar
[15]Schinzel, A.. Abelian binomials, power residues and exponential congruences. Acta Arith. 32 (1977), 245274.CrossRefGoogle Scholar
[16]Schinzel, A.. Selecta. vol. II. European Mathematical Society (2007).Google Scholar
[17]Serre, J.-P.. Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259331.CrossRefGoogle Scholar
[18]Stevenhagen, P.. The correction factor in Artin's primitive root conjecture. J. Théor. Nombres Bordeaux 15 (2003), no. 1, 383391.CrossRefGoogle Scholar
[19]Wagstaff, S. S. Jr., Pseudoprimes and a generalisation of Artin's conjecture. Acta Arith. 41 (1982), 141150.CrossRefGoogle Scholar