Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:37:57.366Z Has data issue: false hasContentIssue false

Fermat's method of factorisation

Published online by Cambridge University Press:  13 March 2015

Peter Shiu*
Affiliation:
353 Fulwood Road, Sheffield S10 3BQ, e-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lucas, Edouard, Récréations Mathématiques, (1894) Note 230. Translation by Luke Welsh accessed December 2014 at http://primes.utm.edu/mersenne/LukeMirror/litlit_068s.htm.Google Scholar
2. Stinson, Douglas R., Combinatorial Designs: Constructions and Analysis, Springer (2004).Google Scholar
3. Gauss, C. F., Disquisitiones Arithmeticae (1801); translated by Clarke, Arthur A., Yale University Press (1966).Google Scholar
4. Pomerance, Carl, A tale of two sieves, Notices of the Amer. Math. Soc. 43 12 (1996) pp. 14731485.Google Scholar
5. Crandall, Richard and Pomerance, Carl, Prime numbers: a computational perspective (2nd edn.), Springer (2005).Google Scholar
6. Cole, F. N., On the factoring of large numbers, Bull. Amer. Math. Soc, 10 (3), (1903) pp. 134137.Google Scholar
7. Shiu, Peter, The factorisation of 267 − 1, Math. Gaz. 99 (March 2015) pp. 104108.CrossRefGoogle Scholar