Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T01:44:20.182Z Has data issue: false hasContentIssue false

Diversity of epiphytic lichens in boreo-nemoral forests on the North-Estonian limestone escarpment: the effect of tree level factors and local environmental conditions

Published online by Cambridge University Press:  08 January 2009

Inga JÜRIADO
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu40 Lai st., Tartu 51005, Estonia. Email: [email protected]
Jaan LIIRA
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu40 Lai st., Tartu 51005, Estonia. Email: [email protected]
Jaanus PAAL
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu40 Lai st., Tartu 51005, Estonia. Email: [email protected]

Abstract

The species richness and composition of lichens was quantified for four temperate broad-leaved tree species (Acer platanoides, Fraxinus excelsior, Tilia cordata and Ulmus glabra) in boreo-nemoral forests on the talus slope of the North-Estonian limestone escarpment (North-Estonian Klint). Thirteen study sites were distributed along the klint on a west to east gradient. The effects of tree and stand characteristics and geographical location of a stand on composition and diversity of epiphytic lichens were evaluated by multivariate analyses (DCA, CCA, pCCA) and by general linear mixed models (GLMM). Tree level variables (e.g. bark pH, bryophytes cover and host tree species) explained the largest fraction of the variation in lichen species composition. However, species richness and composition were significantly influenced also by the unique habitat conditions of klint forest (length of the forest fragment, proximity of the stand to the sea and height of the escarpment). A significant correlation between stand locality and lichen diversity on the tree bole was found which is most likely related to local air pollution gradients caused by alkaline cement dust and acid pollutants in the north-eastern part of Estonia.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Petrov, B. N. & Csáki, F., eds): 267281. Budapest: Akadémiai Kiadó.Google Scholar
Aude, E. & Poulsen, R. S. (2000) Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forests. Applied Vegetation Science 3: 8188.CrossRefGoogle Scholar
Barkman, J. J. (1958) Phytosociology and Ecology of Cryptogamic Epiphytes. Assen: Van Gorcum & Comp. N. V.Google Scholar
Belinchón, R., Martínéz, I., Escudero, A., Aragón, G. & Valladares, F. (2007) Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. Journal of Vegetation Science 18: 8190.CrossRefGoogle Scholar
Berg, Å., Gärdenfors, U., Hallingbäck, T. & Nordén, M. (2002) Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden – analyses of data from a national survey. Biodiversity and Conservation 11: 14791503.CrossRefGoogle Scholar
Berglund, H. & Jonsson, B. G. (2001) Predictability of plant and fungal species richness of old-growth boreal forest islands. Journal of Vegetation Science 12: 857866.CrossRefGoogle Scholar
Borcard, D., Legendre, P. & Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecology 73: 10451055.CrossRefGoogle Scholar
Boudreault, C., Gauthier, S. & Bergeron, Y. (2000) Epiphytic lichens and bryophytes on Populus tremuloides along a chronosequence in the southwestern boreal forest of Québec, Canada. Bryologist 103: 725738.CrossRefGoogle Scholar
Brodo, I. M. (1973) Substrate ecology. In The Lichens (Ahmadjian, V. & Hale, M. E., eds): 401441. New York and London: Academic Press.CrossRefGoogle Scholar
Burgaz, A. R., Fuertes, E. & Escudero, A. (1994) Ecology of cryptogamic epiphytes and their communities in deciduous forests in mediterranean Spain. Vegetatio 112: 7386.CrossRefGoogle Scholar
Cieśliński, S., Czyżewska, K., Klama, H. & Żarnowiec, J. (1996) Epiphytes and epiphytism. Phytocoenosis 8: 1535.Google Scholar
Database of Estonian Lichens (2008) eSamba – Tartu Ülikooli Loodusmuuseumi (TU) Eesti samblike andmebaas. http://www.ut.ee/ial5/lich/baasid/esamba.html. Cited 10 Aug 2008. [In Estonian].Google Scholar
Diekmann, M. (1996) Ecological behaviour of deciduous hardwood trees in Boreo-nemoral Sweden in relation to light and soil conditions. Forest Ecology and Management 86: 114.CrossRefGoogle Scholar
EC (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of European Community L 206: 750.Google Scholar
Ellis, C. J. & Coppins, B. J. (2007 a) 19th century woodland structure controls stand-scale epiphyte diversity in present-day Scotland. Diversity and Distributions 13: 8491.CrossRefGoogle Scholar
Ellis, C. J. & Coppins, B. J. (2007 b) Reproductive strategy and the compositional dynamics of crustose lichen communities on aspen (Populus tremula L.) in Scotland. Lichenologist 39: 377391.CrossRefGoogle Scholar
Esseen, P.-A., Ehnström, B., Ericson, L. & Sjöberg, K. (1997) Boreal forests. Ecological Bulletins 46: 1647.Google Scholar
Gotelli, N. & Graves, G. (1996) Null Models in Ecology. Washington and London: Smithsonian Institution Press.Google Scholar
Gustafsson, L. & Eriksson, I. (1995) Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. Journal of Applied Ecology 32: 412424.CrossRefGoogle Scholar
Gustafsson, L., de Jong, J. & Norén, M. (1999) Evaluation of Swedish woodland key habitats using red-listed bryophytes and lichens. Biodiversity and Conservation 8: 11011114.CrossRefGoogle Scholar
Haapala, H., Goltsova, N., Seppälä, R., Huttunen, S., Kouki, J., Lamppu, J. & Popovichev, B. (1996) Ecological condition of forests around the eastern part of the Gulf of Finland. Environmental Pollution 91: 253265.CrossRefGoogle ScholarPubMed
Hansson, L. (ed) (1997) Boreal ecosystems and landscapes; structures processes and conservation of biodiversity. Ecological Bulletins 46: 1203.Google Scholar
Hill, M. O. & Gauch, H. G. J. (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 4758.CrossRefGoogle Scholar
Ingerpuu, N., Vellak, K., Liira, J. & Pärtel, M. (2003) Relationships between species richness patterns in deciduous forests at the north Estonian limestone escarpment. Journal of Vegetation Science 14: 773780.CrossRefGoogle Scholar
Johansson, P., Rydin, H. & Thor, G. (2007) Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience 14: 8191.CrossRefGoogle Scholar
Jüriado, I., Liira, J. & Paal, J. (2003) Epiphytic and epixylic lichen species diversity in Estonian natural forests. Biodiversity and Conservation 12: 15871607.CrossRefGoogle Scholar
Jüriado, I., Suija, A. & Liira, J. (2006) Biogeographical determinants of lichen species diversity on islets in the West-Estonian Archipelago. Journal of Vegetation Science 17: 125134.CrossRefGoogle Scholar
Jüriado, I., Liira, J., Paal, J. & Suija, A. (2008) Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodiversity and Conservation (DOI 10.1007/s10531-008-9460-y).CrossRefGoogle Scholar
Kalda, A. (1962) Die Edellaubwälder Estlands. In Fragen der Bewirtschaftung der Hainwälder (Rebane, H., ed): 129135. Tartu: Teaduste Akadeemia [In Estonian with German summary].Google Scholar
Keskkonnaministri määrus nr 51 (2004) III kaitsekategooria liikide kaitse ala võtmine (Regulation of the Minister of the Environment No. 51. 19.05.2004). Riigi Teataja Lisa 27.05.2004, 69: 1134.Google Scholar
Laasimer, L. (1965) Vegetation of the Estonian S.S.R. Tallinn: Valgus [In Estonian with English summary].Google Scholar
Liblik, V. (2007) Temporal changes in atmospheric air pollution in Ida-Viru county and impact of pollutants on the nature. A review of investigations in the years 1990–2005. In Problems of Contemporary Environmental Studies (Punning, J.-M., ed): 173208. Tallinn: Tallinn University, Institute of Ecology [In Estonian with English summary].Google Scholar
Liblik, V. & Pensa, M. (2001) Specifics and temporal changes in air pollution in areas affected by emissions from oil shale industry, Estonia. Water, Air, and Soil Pollution 130: 17871792.CrossRefGoogle Scholar
Liblik, V., Pensa, M. & Kundel, H. (2000) Temporal changes in atmospheric air pollution in industrial areas of Ida- and Lääne-Viru counties. Forestry Studies 33: 1736 [In Estonian with English summary].Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W. & Wolfinger, R. D. (1996) SAS System for Mixed Models. Cary: SAS Institute Inc.Google Scholar
Lõhmus, A., Kohv, K., Palo, A. & Viilma, K. (2004) Loss of old-growth, and the minimum need for strictly protected forests in Estonia. Ecological Bulletins 51: 401411.Google Scholar
Löbel, S., Snäil, T. & Rydin, H. (2006) Species richness patterns and metapopulation processes – evidence from epiphyte communities in boreo-nemoral forests. Ecography 29: 169182.CrossRefGoogle Scholar
Mandre, M. (ed) (1995) Dust Pollution and Forest Ecosystems. A Study of Conifers in an Alkalized Environment. Tallinn: Institute of Ecology.Google Scholar
Martin, L. & Nilson, E. (1992) Impact of the Kunda cement plant (North-East Estonia) emission on the distribution of epiphytic lichens. Proceedings of the Estonian Academy of Sciences, Ecology 2: 181185.CrossRefGoogle Scholar
McCune, B. & Grace, J. B. (2002) Analysis of Ecological Communities. Oregon: Glenden Beach.Google Scholar
McCune, B. & Mefford, M. J. (1999) PC-ORD. Multivariate Analysis of Ecological Data, Version 4. Oregon: Gleneden Beach.Google Scholar
Mežaka, A., Brūmelis, G. & Piterāns, A. (2008) The distribution of epiphytic bryophyte and lichen species in relation to phorophyte characters in Latvian natural old-growth broad leaved forests. Folia Cryptogamica Estonica 44: 8999.Google Scholar
Miidel, A. (1997) Escarpments and waterfalls. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A.. eds): 391395. Tallinn: Estonian Academy Publishers.Google Scholar
Moe, B. & Botnen, A. (1997) A quantitative study of the epiphytic vegetation on pollarded trunks of Fraxinus excelsior at Havrå Osterøy, western Norway. Plant Ecology 129: 157177.CrossRefGoogle Scholar
Moe, B. & Botnen, A. (2000) Epiphytic vegetation on pollarded trunks of Fraxinus excelsior in four different habitats at Grinde, Leikanger, western Norway. Plant Ecology 151: 143159.CrossRefGoogle Scholar
Nilson, E. (1995) Species composition and structure of epiphytic lichen assemblages on Scots pine around the Kunda cement plant. In Dust Pollution and Forest Ecosystems. A Study of Conifers in an Alkalized Environment (Mandre, M., ed): 134140. Tallinn: Institute of Ecology.Google Scholar
Nilsson, S. G. (1992) Forests in the temperate–boreal transition–natural and man-made features. In Ecological Principles of Nature Conservation. Applications in Temperate and Boreal Environments (Hansson, L., ed): 373393. London and New York: Elsevier Applied Science.CrossRefGoogle Scholar
Paal, J. (1997) Classification of Estonian Vegetation Site Types. Tallinn: Estonian Environment Information Centre [In Estonian].Google Scholar
Paal, J. (1998) Rare and threatened plant communities of Estonia. Biodiversity and Conservation 7: 10271049.CrossRefGoogle Scholar
Paal, J. (2001) The North-Estonian klint: soil and vegetation diversity. Publicationes Instituti Geographici Universitatis Tartuensis 92: 761764.Google Scholar
Paal, J. (2007) Eesti pangametsade tüpoloogia. In XXX Estonian Naturalists' Congress. Nature of Klint Areas. June 30 – July 1, 2007 (Puura, I., Pihu, S. & Amon, L., eds): 5564. Nõva, Estonia [In Estonian].Google Scholar
Paal, J., Vellak, K. & Ingerpuu, N. (2001) Species content of the Estonian klint forests, their classification structure and their correlation with the main soil parameters. Forestry Studies 35: 104132 [In Estonian with English summary].Google Scholar
Price, K. & Hochachka, G. (2001) Epiphytic lichen abundance: effects of stand age and composition in coastal British Columbia. Ecological Applications 11: 904913.CrossRefGoogle Scholar
Randlane, T. & Saag, A. (eds) (1999) Second checklist of lichenized, lichenicolous and allied fungi of Estonia. Folia Cryptogamica Estonica 35: 1132.Google Scholar
Randlane, T., Jüriado, I., Suija, A., Lóhmus, P. & Leppik, E. (2008) Lichens in the new Red List of Estonia. Folia Cryptogamica Estonica 44: 113120.Google Scholar
Randlane, T., Saag, A. & Suija, A. (2007) Lichenized, lichenicolous and allied fungi of Estonia. http://www.ut.ee/lichens/fce.html. Cited 11 Nov 2007.Google Scholar
Raukas, A. & Teedumäe, A. (eds) (1997) Geology and Mineral Resources of Estonia. Tallinn: Estonian Academy Publishers.Google Scholar
SAS Institute Inc. (1989) SAS/STAT® User's Guide. Version 6. Fourth Edition. Cary: SAS Institute Inc.Google Scholar
Scheidegger, C. & Goward, T. (2002) Monitoring lichens for conservation: red lists and conservation action plans. In: Monitoring with Lichens – Monitoring Lichens. (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 163181. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Sillett, S. C., McCune, B., Peck, J. E., Rambo, T. R. & Ruchty, A. (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecological Applications 10: 789799.CrossRefGoogle Scholar
Shao, J. (1997) An asymptotic theory for linear model selection. Statistica Sinica 7: 221264.Google Scholar
Snäll, T., Ribeiro, P. J. & Rydin, H. (2003) Spatial occurrence and colonisations in patch-tracking metapopulations: local conditions versus dispersal. Oikos 103: 566578.CrossRefGoogle Scholar
StatSoft, Inc. (2005) Statistica for Windows, Ver 7.1. Tulsa: Statsoft, Inc.Google Scholar
Suuroja, K. (2005) Põhja-Eesti klint. Tallinn: Tallinna Raamatutrükikoda [In Estonian].Google Scholar
ter Braak, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 11671179.CrossRefGoogle Scholar
ter Braak, C. J. F. & Šmilauer, P. (2002) CANOCO Reference Manual and CanoDrawfor Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, New York: Microcomputer Power.Google Scholar
Thor, G. (1998) Red-listed lichens in Sweden: habitats, threats, protection, and indicator value in boreal coniferous forests. Biodiversity and Conservation 7: 5972.CrossRefGoogle Scholar
Vabariigi Valitsuse määrus nr 195. (2004) I ja II kaitsekategooriana kaitse ala võetavate liikide loetelu (Regulation of the Government of Estonia No. 195. 20.05.2004). Riigi Teataja I 21.05.2004, 44: 313.Google Scholar
Valk, U. & Eilart, J. (1974) Estonian Forests. Tallinn: Valgus [In Estonian].Google Scholar
Web map server of Estonian Land Board (2007) X-GIS system. http://xgis.maaamet.ee Cited 10 Oct 2007.Google Scholar