Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T02:01:37.399Z Has data issue: false hasContentIssue false

A discussion about reproductive modes of Pseudevernia furfuracea based on phylogenetic data

Published online by Cambridge University Press:  03 June 2010

Zuzana FERENCOVA
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
Ruth DEL PRADO
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
Israel PÉREZ-VARGAS
Affiliation:
Departamento de Biología Vegetal, Facultad de Farmacia, Universidad de La Laguna, E-38071, La Laguna, Tenerife, Canary Islands, Spain.
Consuelo HERNÁNDEZ-PADRÓN
Affiliation:
Departamento de Biología Vegetal, Facultad de Farmacia, Universidad de La Laguna, E-38071, La Laguna, Tenerife, Canary Islands, Spain.
Ana CRESPO*
Affiliation:
Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, E-28040 Madrid, Spain.

Abstract

Two asexual reproductive strategies of the common lichen Pseudevernia furfuracea are described. Although the species propagates mainly by isidia, some specimens also show the development of soralia. Morphological, chemical and molecular analyses were performed on three such sorediate specimens from the Canary Islands, Morocco and Turkey. Maximum parsimony, maximum likelihood and Bayesian analyses indicate that: a) sorediate samples represent only a morphological variant of the reproductive mode and b) the separation of taxa (at species level or below) on the basis of their containing either olivetoric acid or physodic and oxyphysodic acids is not appropriate. In addition, a phylogenetic reconstruction of the genus Pseudevernia is presented for the first time. The tree shows two sister monophyletic clades, one containing American species (P. intensa, P. cladonia, P. consocians), and the second encompassing the P. furfuracea samples (including sorediate specimens). The biological and taxonomic significance of soralia in sorediate samples is discussed.

Type
Research Article
Copyright
Copyright © British Lichen Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argüello, A., Del Prado, R., Cubas, P. & Crespo, A. (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society 91: 455467.CrossRefGoogle Scholar
Articus, K., Mattsson, J.-E., Tibell, L., Grube, M. & Wedin, M. (2002) Ribosomal DNA and beta-tubulin data do not support the separation of the lichens Usnea florida and U. subfloridana as distinct species. Mycological Research 106: 412418.CrossRefGoogle Scholar
Blanco, O., Crespo, A., Divakar, P. K., Esslinger, T. L., Hawksworth, D. L. & Lumbsch, H. T. (2004) Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular and morphological data. Mycological Research 108: 873884.CrossRefGoogle ScholarPubMed
Buckley, T. R., Arensburger, P., Simon, C. & Chambers, G. K. (2002) Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Systematic Biology 51: 418.CrossRefGoogle ScholarPubMed
Buschbom, J. & Mueller, G. M. (2006) Testing ‘species pair’ hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and P. melinodes. Molecular Biology and Evolution 23: 574586.CrossRefGoogle ScholarPubMed
Clerc, P. (2004) Les champignons lichénisés de Suisse. Catalogue bibliographique complété par des données sur la distribution et l'écologie des espèces. Cryptogamica Helvetica 19: 1320.Google Scholar
Crespo, A., Blanco, O. & Hawksworth, D. L. (2001) The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens. Taxon 50: 807819.CrossRefGoogle Scholar
Crespo, A., Lumbsch, H. T., Mattsson, J.-E., Blanco, O., Divakar, P. K., Articus, K., Wiklund, E., Bawingan, P. A. & Wedin, M. (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812824.CrossRefGoogle ScholarPubMed
Cubero, O. F., Crespo, A., Esslinger, T. L. & Lumbsch, H. T. (2004) Molecular phylogeny of the genus Physconia (Ascomycota, Lecanorales) inferred from a Bayesian analysis of nuclear ITS rDNA sequences. Mycological Research 108: 498505.CrossRefGoogle ScholarPubMed
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, W. L., Culberson, C. F. & Johnson, A. (1977) Pseudevernia furfuracea-olivetorina relationships: chemistry and ecology. Mycologia 69: 604614.CrossRefGoogle Scholar
Culberson, C. F., Culberson, W. L. & Johnson, A. (1981) A standardized TLC analysis of ß-orcinol depsidones. Bryologist 84: 1629.CrossRefGoogle Scholar
Culberson, C. F. & Johnson, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. Journal of Chromatography 238: 483487.CrossRefGoogle Scholar
DeQueiroz, A. (1993) For consensus (sometimes). Systematic Biology 42: 368372.CrossRefGoogle Scholar
Elix, J. A. & Ernst-Russell, K. D. (eds) (1993) A Catalogue of Standardized Thin Layer Chromatographic Data and Biosynthetic Relationships for Lichen Substances. 2nd ed. Canberra: Australian National University.Google Scholar
Felsenstein, J. (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39: 783791.CrossRefGoogle ScholarPubMed
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rust. Molecular Ecology 2:113118.CrossRefGoogle Scholar
Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. (2005) PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research 33(Web Server Issue): W557W559.CrossRefGoogle ScholarPubMed
Hafellner, J. & Obermayer, W. (2004) Beobachtungen an einer sorediösen Population von Pseudevernia furfuracea. Herzogia 17: 4550.Google Scholar
Hale, M. E. (1965) A monograph of Parmelia subgenus Amphigymnia. Contributions from the United States National Herbarium 36: 193358.Google Scholar
Hale, M. E. (1968) A synopsis of the lichen genus Pseudevernia. Bryologist 71: 111.CrossRefGoogle Scholar
Hale, M. E. (1976) A monograph of the lichen genus Parmelina Hale (Parmeliaceae). Smithsonian Contributions to Botany 33: 160.Google Scholar
Hale, M. E. (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Contributions to Botany 74: 1250.CrossRefGoogle Scholar
Halvorsen, R. & Bendiksen, E. (1982) The chemical variation of Pseudevernia furfuracea in Norway. Nordic Journal of Botany 2: 371380.CrossRefGoogle Scholar
Hawksworth, D. L. & Chapman, D. S. (1971) Pseudevernia furfuracea (L.) Zopf and its chemical races in the British Isles. Lichenologist 5: 5158.CrossRefGoogle Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
Lohtander, K., Kallersjö, M. & Tehler, A. (1998a) Dispersal strategies in Roccellina capensis (Arthoniales). Lichenologist 30: 341350.CrossRefGoogle Scholar
Lohtander, K., Myllys, L., Sundin, R., Kallersjö, M. & Tehler, A. (1998b) The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist 101: 404411.CrossRefGoogle Scholar
López, F. & Manrique, E. (1989) Pseudevernia furfuracea (L.) Zopf: Razas químicas y su distribución en la Península Ibérica. Anales del Jardín Botánico de Madrid 46: 295305.Google Scholar
Lutzoni, F. Wagner, P., Reeb, V. & Zoller, S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628651.CrossRefGoogle ScholarPubMed
Molina, M. C., Crespo, A., Blanco, O., Hladun, N. & Hawksworth, D. L. (2002) Molecular phylogeny and status of Diploicia and Diplotomma, with observations on Diploicia subcanescens and Diplotomma rivas-martinezii. Lichenologist 34: 509519.CrossRefGoogle Scholar
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. (1999) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Molecular Phylogenetics and Evolution 12: 295309.CrossRefGoogle Scholar
Myllys, L., Lohtander, K. & Tehler, A. (2001) Beta-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93: 335343.CrossRefGoogle Scholar
Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. L. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 53: 4767.CrossRefGoogle ScholarPubMed
Obermayer, W. (2008) Fotografische Dokumentation einer ungewöhnlich reich fruchtenden Aufsammlung von Cetraria islandica (L.) Ach. (mit einem historischen Abriss zur Darstellung fertiler Thalli, Anmerkungen zur Gestalt der Pycnosporen und einigen Notizen zum Gebrauch des, Kramperltees'). Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark 138: 113158.Google Scholar
Orange, A., James, P. W. & White, F. J. (eds) (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357358.Google ScholarPubMed
Poelt, J. (1970) Das Konzept der Artenpaare bei den Flechten. Berichte der Deutschen Botanischen Gesellschaft 4: 187198.Google Scholar
Poelt, J. (1972) Die taxonomische Behandlung von Artenpaaren bei den Flechten. Botaniska Notiser 125: 7781.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Printzen, C. (2002) Fungal specific primers for PCR-amplification of mitochondrial LSU in lichens. Molecular Ecology Notes 2: 130132.CrossRefGoogle Scholar
Rikkinen, J. (1997) Habitat shifts and morphological variation of Pseudevernia furfuracea along a topographical gradient. In Lichen Studies Dedicated to Rolf Santesson (Symbolae Botanicae Upsalienses) (Tibell, L. & Hedberg, I., eds): 223245. Uppsala: Acta Universitatis Upsaliensis.Google Scholar
Rodríguez, F., Oliver, J. F., Martín, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. & Fisher, M. C. (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 2132.CrossRefGoogle ScholarPubMed
Tehler, A. (1982) The species pair concept in lichenology. Taxon 31: 708714.CrossRefGoogle Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T. D., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar