Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T16:17:46.710Z Has data issue: false hasContentIssue false

Assessing the Scale of Prehistoric Human Impact in the Neotropics Using Stable Carbon Isotope Analyses of Lake Sediments: A Test Case From Costa Rica

Published online by Cambridge University Press:  20 January 2017

Chad S. Lane*
Affiliation:
Department of Geography, University of Tennessee, Knoxville, TN 37996
Sally P. Horn
Affiliation:
Department of Geography, University of Tennessee, Knoxville, TN 37996
Zachary P. Taylor
Affiliation:
Department of Geography, University of Tennessee, Knoxville, TN 37996
Claudia I. Mora
Affiliation:
Department of Earth and Planetary Science, University of Tennessee, Knoxville, TN 37996
*
1Current Address: Department of Geology, Lawrence University, Appleton, WI 54912

Abstract

Analyses of pollen and other terrestrial microfossils in sediment profiles from neotropical lakes can complement and extend archaeological studies by documenting the timing of prehistoric human disturbances within watersheds. However, assessing the scale of prehistoric human impact from sedimentary microfossil assemblages alone is often difficult. We explore here the utility of combining stable carbon isotope (δ13C) analyses of lake sediments and isotopie mixing models to improve our ability to gauge the extent of prehistoric human disturbance recorded in sediment profiles. Our test case involves the analysis o f a sediment core from Laguna Bonillita on the central Caribbean slope of Costa Rica that spans approximately the last 2,700 calendar years. Variations in the δ13C values of the Laguna Bonillita sediments suggest that human population growth and environmental impacts in the watershed were at their maximum ~cal yr 300 B.C. This finding is in keeping with archaeological evidence of rapid regional population growth at this time but differs from initial interpretations of the sediment record that were based on pollen and charcoal analyses alone. We believe that the use of stable carbon isotope data from sediment profiles can improve estimates of the scale of prehistoric human impact and in doing so improve the contributions of paleoecological research to archaeology.

Los análises del polen y de los otros microfósiles terrestres en perfíles de sedimentos de lagos neotropicales pueden complementar y ampliar los estudios arqueológicos por documentar la cronología de perturbaciones humanas prehistóricos dentro de las cuencas de los lagos. Sin embargo, evaluando la escala del impacto humano prehistórico sólo de los conjuntos sedimentarios de microfósiles es a menudo difícil. Exploramos aquila utilidad de combinar el análisis de los isótopos estables del carbono (δ13C) de los sedimentos lacustres con modelos de mezclar isotópicos (isotope mixing models) para mejorar nuestra capacidad de estimar el grado de pertubación prehistórica humana registrada en perfiles de sedimento. Nuestro caso de prueba implica el análisis de un núcleo de sedimento de Laguna Bonillita en la vertiente Caribe central de Costa Rica que atreviesa aproximadamente los últimos 2,700 años calibrados. Las variaciones en los valores δ13C de los sedimentos de Laguna Bonillita sugieren que el crecimiento demográfico humano y los impactos ambientales en la cuenca estuvieran en su máximo aproximadamente 300 años calibrados a.C. Este hallazgo concuerda con la evidencia arqueológica del crecimiento demográfico regional rápido en este tiempo, pero se diferencia de interpretaciones iniciales del registro de sedimento que estaban basadas únicamentes en los análisis de polen y carbón. Creemos que el uso de datos de isótopos estables de carbono en perfiles de sedimento puede mejorar estimaciones de la escala del impacto humano prehistórico, y en hacer así mejore las contribuciones de la investigación paleoecológica a la arqueología.

Type
Part 1: Themed Section on Tehnology Approaches
Copyright
Copyright © 2009 by the Society for American Archaeology.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Anchukaitis, Kevin J., and Horn, Sally P. 2005 A 2000-Year Reconstruction of Forest Disturbance from Southern Pacific Costa Rica. Palaeogeography Palaeoclimatology Palaeoecology 221 (1–2):3554.Google Scholar
Arford, Martin R., and Horn, Sally P. 2004 Pollen Evidence of the Earliest Maize Agriculture in Costa Rica. Journal of Latin American Geography 3(1):108115.Google Scholar
Balesdent, Jerome, and Mariotti, Andre 1996 Measurement of Soil Organic Matter Turnover Using δ13C Natural Abundance. In Mass Spectrometry of Soils, edited by T. W. Boutton and S. Yamasaki, pp. 83111. Marcel Dekker, New York.Google Scholar
Behling, Hermann 2000 A 2860-Year High-Resolution Pollen and Charcoal Record from the Cordillera de Talamanca in Panama: A History of Human and Volcanic Forest Disturbance. The Holocene 10(3):387393.CrossRefGoogle Scholar
Bender, Margaret M. 1971 Variations on the 13C Ratios of Plants in Relation to the Pathway of Photosynthetic Carbon Dioxide Fixation. Phytochemistry 10:12391244.Google Scholar
Brincat, David, Yamada, Keita, Ishiwatari, Ryoshi, Uemura, Hitoshi, and Naraoka, Hiroshi 2000 Molecular-Isotopic Stratigraphy of Long-Chain N-Alkanes in Lake Baikal Holocene and Glacial Age Sediments. Organic Geochemistry 31(4):287294.CrossRefGoogle Scholar
Brown, R. Harold 1999 Agronomic Implications of C4 Photosynthesis. In C4Plant Biology, edited by R. F. Sage and R. K. Monson, pp.473507. Academic Press, San Diego.Google Scholar
Burney, David A., Burney, Lida P., and MacPhee, Ross D. E. 1994 Holocene Charcoal Stratigraphy from Laguna Tortuguero, Puerto Rico, and the Timing of Human Arrival on the Island. Journal of Archaeological Science 21(2):273281.Google Scholar
Bush, Mark B. 2000 Deriving Response Matrices from Central American Modern Pollen Rain. Quaternary Research 54(1):132143.Google Scholar
Bush, Mark B., and Colinvaux, Paul A. 1994 Tropical Forest Disturbance; Paleoecological Records from Darien, Panama. Ecology 75(6):17611768.Google Scholar
Bush, Mark B., Miller, Michael C., De Oliveira, Paulo E., and Colinvaux, Paul A. 2000 Two Histories of Environmental Change and Human Disturbance in Eastern Lowland Amazonia. The Holocene 10(5):543553.Google Scholar
Bush, Mark B., Piperno, Dolores R., Colinvaux, Paul A., De Oliveira, Paulo E., Krissek, Lawrence A., Miller, Michael C., and Rowe, William E. 1992 A 14,300-Yr Paleoecological Profile of a Lowland Tropical Lake in Panama. Ecological Monographs 62(2):251275.Google Scholar
Cayet, Christéle, and Lichtfouse, Eric 2001 Delta C-13 of Plant-Derived N-Alkanes in Soil Particle-Size Fractions. Organic Geochemistry 32(2):253258.Google Scholar
Chazdon, Robin L. 1978 Ecological Aspects of the Distribution of C4 Grasses in Selected Habitats of Costa Rica. Biotropica 10:265269.Google Scholar
Clement, Rachel M., and Horn, Sally P. 2001 Pre-Columbian Land-Use History in Costa Rica: A 3000-Year Record of Forest Clearance, Agriculture and Fires from Laguna Zoncho. The Holocene 11(4):419426.Google Scholar
Coen, E. 1983 Climate. In Costa Rica Natural History, edited by D. H. Janzen, pp. 3546. University of Chicago Press, Chicago.Google Scholar
Curtis, Jason H., Brenner, Mark, Hodell, David A., Balser, Richard A., Islebe, Gerald A., and Hooghiemstra, Henry 1998 A Multi-Proxy Study of Holocene Environmental Change in the Maya Lowlands of Peten, Guatemala. Journal of Paleolimnology 19(2): 139159.Google Scholar
Dull, Robert A. 2006 The Maize Revolution: A View from El Salvador. In Histories of Maize: Multidisciplinary Approaches to the Prehistory, Biogeography, Domestication, and Evolution of Maize, edited by J. Staller, R. Tykot, and B. Benz, pp. 357367. Elsevier Press, San Diego.Google Scholar
Ficken, Kath J., Wooller, Matthew J., Swain, D. L., Street-Perrott, F. Alayne, and Eglinton, Geoffrey 2002 Reconstruction of a Subalpine Grass-Dominated Ecosystem, Lake Rutundu, Mount Kenya: A Novel Multi-Proxy Approach. Palaeogeography Palaeoclimatology Palaeoecology 177(1–2): 137149.Google Scholar
Goman, Michelle, and Byrne, Roger 1998 A 5000-Year Record of Agriculture and Tropical Forest Clearance in the Tuxtlas, Veracruz, Mexico. The Holocene 8(1):8389.Google Scholar
Haberyan, Kurt A., and Horn, Sally P. 2005 Diatom Paleoecology of Laguna Zoncho, Costa Rica. Journal of Paleolimnology 33(3):361369.Google Scholar
Haug, Gerald H., Günther, Detlef, Peterson, Larry C., Sigman, Daniel M., Hughen, Konrad A., and Aeshcilmann, Beat 2003 Climate and the Collapse of Maya Civilization. Science 299:17311735.Google Scholar
Haug, Gerald H., Hughen, Konrad A., Sigman, Daniel M., Peterson, Larry C., and Rohl, Ursula 2001 Southward Migration of the Intertropical Convergence Zone Through the Holocene. Science 293:13041308.Google Scholar
Hayes, J. M., Freeman, Katherine H., Popp, Brian N., and Hoham, Christopher H. 1990 Compound-Specific Isotopic Analyses—A Novel Tool for Reconstruction of Ancient Biogeochemical Processes. Organic Geochemistry 16(4–6): 11151128.Google Scholar
Hodell, David A., Brenner, Mark, and Curtis, Jason H. 2005a Terminal Classic Drought in the Northern Maya Lowlands Inferred from Multiple Sediment Cores in Lake Chichancanab (Mexico). Quaternary Science Reviews 24:14131427.Google Scholar
Hodell, David A., Brenner, Mark, Curtis, Jason H., Medina-Gonzalez, Roger, Can, Enrique I. C., Albornaz-Pat, Alma, and Guilderson, Thomas P. 2005b Climate Change on the Yucatan Peninsula During the Little Ice Age. Quaternary Research 63:109121.Google Scholar
Hodell, David A., Curtis, Jason H., and Brenner, Mark 1995 Possible Role of Climate in the Collapse of Classic Maya Civilization. Nature 375:391394.Google Scholar
Holdridge, Leslie R., Grenke, W. C., Hatheway, W. H., Laing, T., and Tosi, J. A. 1971 Forest Environments in Tropical Life Zones: A Pilot Study. Pergamon Press, Oxford.Google Scholar
Horn, Sally P. 2006 Pre-Columbian Maize Agriculture in Costa Rica: Pollen and Other Evidence from Lake and Swamp Sediments. In Histories of Maize: Multidisciplinary Approaches to the Prehistory, Biogeography, Domestication, and Evolution of Maize, edited by J. Staller, R. Tykot, and B. Benz, pp. 368380. Elsevier Press, San Diego.Google Scholar
Horn, Sally P., and Kennedy, Lisa M. 2001 Pollen Evidence of Maize Cultivation 2700 BP at La Selva Biological Station, Costa Rica. Biotropica 33(1):191196.Google Scholar
Horn, Sally P., and Sanford, Robert L. 1992 Holocene Fires in Costa Rica. Biotropica 24:354361.Google Scholar
Huang, Yongsong, Freeman, Katherine, Eglinton, Timothy I., and Alayne Street-Perrott, F. 1999 Delta C-13 Analyses of Individual Lignin Phenols in Quaternary Lake Sediments: A Novel Proxy for Deciphering Past Terrestrial Vegetation Changes. Geology 27(5):471474.Google Scholar
Huang, Yongsong, Street-Perrott, F Alayne, Metcalfe, Sarah E., Brenner, Mark, Moreland, M., and Freeman, Katherine H. 2001 Climate Change as the Dominant Control on Glacial-Interglacial Variations in C-3 and C-4 Plant Abundance. Science 293(5535):16471651.Google Scholar
Iitis, Hugh H. 1983 From Teosinte to Maize—The Catastrophic Sexual Transmutation. Science 222(4626):886894.Google Scholar
Islebe, Gerald A., Hooghiemstra, Henry, Brenner, Mark, Curtis, Jason H., and Hodell, David A. 1996 A Holocene Vegetation History from Lowland Guatemala. The Holocene 6(3):265271.Google Scholar
Jacob, John S., and Hallmark, Charles T. 1996 Holocene Stratigraphy of Cobweb Swamp, a Maya Wetland in Northern Belize. Geological Society of America Bulletin 108(7):883891.Google Scholar
Kennedy, Lisa M., and Horn, Sally P. 2008 A Late Holocene Pollen and Charcoal Record from La Selva Biological Station, Costa Rica. Biotropica 40:1116.Google Scholar
Kennedy, William 1968 Archaeological Investigations in the Reventazón River Drainage Area, Costa Rica, Tulane University, New Orleans.Google Scholar
Kennedy, William 1976 Prehistory of the Reventazón River Drainage Area, Costa Rica. Vínculos 2(1):87100.Google Scholar
Lane, Chad S., Horn, Sally P., and Mora, Claudia I. 2004 Stable Carbon Isotope Ratios in Lake and Swamp Sediments as a Proxy for Prehistoric Forest Clearance and Crop Cultivation in the Neotropics. Journal of Paleolimnology 32(4):375381.Google Scholar
Larsen, Chris P. S., and MacDonald, Glen M. 1993 Lake Morphometry, Sediment Mixing and the Selection of Sites for Fine Resolution Paleoecological Studies. Quaternary Science Reviews 12:781792.Google Scholar
Leyden, Barbara W., Brenner, Mark, and Dahlin, Bruce H. 1998 Cultural and Climatic History of Coba, a Lowland Maya City in Quintana Roo, Mexico. Quaternary Research 49(1):111122.Google Scholar
Meyers, Phillip A., and Ishiwatari, Ryoshi 1993 Lacustrine Organic Geochemistry—An Overview of Indicators of Organic-Matter Sources and Diagenesis in Lake-Sediments. Organic Geochemistry 20(7):867900.Google Scholar
Meyers, Phillip A., and Lallier-Verges, Elisabeth 1999 Lacustrine Sedimentary Organic Matter Records of Late Quaternary Paleoclimates. Journal of Paleolimnology 21(3):345372.Google Scholar
Northrop, Lisa A. 1994 Precolumbian Agriculture, Fires, and Vegetation Dynamics in a Lowland Rainforest: Paleoecological Evidence from Laguna Bonilla and Laguna Bonillita, Costa Rica. University of Tennessee, Knoxville.Google Scholar
Northrop, Lisa A., and Horn, Sally P. 1996 PreColumbian Agriculture and Forest Disturbance in Costa Rica: Palaeoecological Evidence from Two Lowland Rainforest Lakes. The Holocene 6(3):289299.Google Scholar
O’Leary, Marion H. 1981 Carbon Isotope Fractionation in Plants. Phytochemistry 20:553567.Google Scholar
Phillips, Donald L., and Gregg, Jillian W. 2001 Uncertainty in Source Partitioning Using Stable Isotopes. Oecologia 127(2): 171179.Google Scholar
Piperno, Dolores R. 1984 A Comparison and Differentiation of Phytoliths from Maize and Wild Grasses, Use of Morphological Criteria. American Antiquity 49(2):361383.Google Scholar
Piperno, Dolores R., and Pearsall, Deborah M. 1993 Phytoliths in the Reproductive Structures of Maize and Teosinte—Implications for the Study of Maize Evolution. Journal of Archaeological Science 20(3):337362.Google Scholar
Raynor, Gilbert S., Ogden, Eugene C., and Hayes, Janet V. 1972 Dispersion and Deposition of Corn Pollen from Experimental Sources. Agronomy Journal 64:420427.CrossRefGoogle Scholar
Reimer, Paula J., Baillie, Mike G. L., Bard, Edouard, Bayliss, Alex, Warren Beck, J., Bertrand, Chandra J. H., Blackwell, Paul G., Buck, Caitlin E., Burr, George S., Cutler, Kirsten B., Damon, Paul E., Edwards, R. Lawrence, Fairbanks, Richard G., Friedrich, Michael, Guilderson, Thomas P., Hogg, Alan G., Hughen, Konrad A., Kromer, Bernd, McCormac, Gerry, Manning, Sturt W., Ramsey, Christopher B., Reimer, Ron W., Remmele, Sabine, Southon, John R., Stuiver, Minze, Talamo, Sahra, Taylor, F. W., van der Plicht, Johannes, and Weyhenmeyer, Constanze E. 2004 IntCal04 Terrestrial Radiocarbon Age Calibration, 26-0 ka BP. Radiocarbon 46:10291058.Google Scholar
Rodgers, John C. III, and Horn, Sally P. 1996 Modern Pollen Spectra from Costa Rica. Palaeogeography Palaeoclimatology Palaeoecology 124:5371.Google Scholar
Rosenmeier, Michael E, Hodell, David A., Brenner, Mark, Curtis, Jason H., and Guilderson, Thomas P. 2002 A 4000-Year Lacustrine Record of Environmental Change in the Southern Maya Lowlands, Peten, Guatemala. Quaternary Research 57(2):183190.Google Scholar
Sage, Rowan F., Wedin, David A., and Li, Meirong 1999 The Biogeography of C4 Photosynthesis: Patterns and Controlling Factors. In C4 Plant Biology, edited by R. F Sage and R. K. Monson, pp. 313373. Academic Press, San Diego.Google Scholar
Smith, Francesca A., and White, James W. C. 2004 Modem Calibration of Phytolith Carbon Isotope Signatures for C-3/C-4 Paleograssland Reconstruction. Palaeogeography Palaeoclimatology Palaeoecology 207(3–4):277304.Google Scholar
Snarskis, Michael J. 1981 The Archaeology of Costa Rica. In Between Continents/Between Seas: Precolumbian Art of Costa Rica, edited by E. P. Benson, pp. 1584. Harry N. Abrams Publishers, New York.Google Scholar
Snarskis, Michael J. 1984 Central America: The Lower Caribbean. In The Archaeology of Lower Central America, edited by F. W. Lange and D. L. Stone, pp. 195232. University of New Mexico Press, Albuquerque.Google Scholar
Stone, Doris 1956 Date of Maize in Talamanca, Costa Rica: An Hypothesis. Journal de la Societe des Americanistes 45:189194.CrossRefGoogle Scholar
Stuiver, Minze, and Reimer, Paula J. 1993 Extended 14C Database and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35:215230.Google Scholar
Taylor, Zachary P., Horn, Sally P., and Mora, Claudia I. 2006 Intra-Basin Variation of Stable Carbon Isotope Ratios. Paper presented at the Annual Meeting of the Association of American Geographers, Chicago.Google Scholar
Telford, Richard J., Heegaard, E., and Birks, Harry J. B. 2004 The Intercept Is a Poor Estimate of a Calibrated Radiocarbon Age. The Holocene 14(2):296298.Google Scholar
Tosi, Joseph A. 1969 República de Costa Rica: Mapa ecológico 1:750,000. Centra Científico Tropical, San José.Google Scholar
Whitmore, Thomas J., Brenner, Mark, Curtis, Jason H., Dahlin, Bruce H., and Leyden, Barbara W 1996 Holocene Climatic and Human Influences on Lakes of the Yucatan Peninsula, Mexico: An Interdisciplinary, Palaeolimnological Approach. The Holocene 6(3):273287.CrossRefGoogle Scholar
Wright, Herb E., Mann, D. H., and Glaser, P. H. 1984 Piston Corers for Peat and Lake Sediments. Ecology 65:657659.Google Scholar