Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T01:00:24.611Z Has data issue: false hasContentIssue false

Charge state and nonlinear stopping power of heavy ions in a fully ionized plasma

Published online by Cambridge University Press:  09 March 2009

O. Boine-Frankenheim
Affiliation:
Theoretische Quantenelektronik (TQE), TH Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany
C. Stöckl
Affiliation:
Institut für angewandte Physik (IAP), TH Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany

Abstract

Due to the high nonequilibrium charge states specific to heavy ions, the plasma regime with coupling parameters l/ND < 1 and Zp/ND > 1 (ND ∼ number of electrons in a Debye sphere, Zp mean charge state of the projectile) is of interest for the applications. In this regime the stopping power cannot be obtained by a linearization of the Vlasov-Poisson system, but forcing a fully nonlinear treatment. In the present paper the Vlasov-Poisson system is solved numerically by using the capability of the new generation of massively parallel supercomputers. The results are compared with the standard dielectric theory and a binary collision approach. Charge-state calculations are performed, accounting for all relevant features of the atomic processes and the spectra characteristic to heavy ions in dense plasma targets. The results show good agreement with experimental measurement for medium and heavy ions penetrating a Z-pinch device.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J. & Clark, R.E.H. 1994 J. Phys. B 27, 3589.CrossRefGoogle Scholar
Alton, R.A. et al. 1992 Phys. Rev. A 45, 5957.CrossRefGoogle Scholar
Arnold, R.C. & Meyer-Ter-Vehn, J. 1988 Z. Phys. D 9, 65.CrossRefGoogle Scholar
Boine-Frankenheim, O. & D'Avanzo, J. 1996 Phys. of Plasmas 3, 792.CrossRefGoogle Scholar
Boine-Frankenheim, O. 1996 Phys. of Plasmas 3, 1585.CrossRefGoogle Scholar
Burgess, A. et al. 1977 Mon. Not. R. astr. Soc. 179, 275.CrossRefGoogle Scholar
Burgess, A. & Chidichimo, M. 1983 Mon. Not. R. astr. Soc. 203, 1269.CrossRefGoogle Scholar
Cheng, S.G. & Knorr, G. 1976 J. Comput. Phys. 22, 330.CrossRefGoogle Scholar
Dietrich, K.-G. et al. 1992 Phys. Rev. Lett. 69, 3623.CrossRefGoogle Scholar
Dufty, J.W. et al. 1995 Phys. Rev. Lett. 72, 3195.CrossRefGoogle Scholar
Gryzinski, M. 1965 Phys. Rev. 138, A336.Google Scholar
Li, C.K. & Petrasso, R.D. 1993 Phys. Rev. Lett. 70, 3059.CrossRefGoogle Scholar
Ordonez, C.A. & Molina, M.I. 1994 Phys. Rev. Lett. 72, 2407.CrossRefGoogle Scholar
Perrot, F. 1989 Phys. Scr. 39, 332.CrossRefGoogle Scholar
Peter, Th. et al. 1986 Phys. Rev. Lett. 57, 1859.CrossRefGoogle Scholar
Peter, Th. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 1988; 43, 2015.CrossRefGoogle Scholar
Rickert, A. & Meyer-Ter-Vehn, J. 1990 Laser and Part. Beams 8, 715.CrossRefGoogle Scholar
Sigmund, P. 1982 Phys. Rev. A 26, 2497.CrossRefGoogle Scholar
Sθrensen, A.H. & Bonderup, E. 1983 Nucl. Instrum. Methods 215, 27.CrossRefGoogle Scholar
Stöckl, C. et al. 1994 GSI-Report 941, 177.Google Scholar
Van Regemorter, H. 1962 Astrophys. J. 136, 906.CrossRefGoogle Scholar
Winkler, Th. et al. 1996 Proc. of the 1st Conf. on Atom. Phys. with stored highly charged ions, Heidelberg, to be published in Hyperfine Interaction.Google Scholar