Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T05:40:49.954Z Has data issue: false hasContentIssue false

A self-consistent Power Relation for an Inverse Compton Scattering Theory

Published online by Cambridge University Press:  09 March 2009

Robert A. Schill
Affiliation:
Department of Electrical and Computer Engineering, University of Nevada at Las Vegas, 4505 Maryland Parkway, Box 454026 Las Vegas, Nevada 89154–4026, USA

Abstract

In a self-consistent manner, the total power for linear inverse Compton scattering between a Gaussian electron beam colliding head on with a Gaussian laser beam is obtained. The theory is shown to agree with well-known limiting cases. Coupling among harmonic modes is explicitly shown in the resultant power relation. Even so, for the parameters of interest, harmonic modes are negligible compared to the fundamental mode. Total power calculations are of importance in detector calibration. The theory is applied using practical linear accelerator and laser parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bardsley, J.N. et al. 1989 Phys. Rev. A 40, 3823.CrossRefGoogle Scholar
Brown, L.S. & Kibble, T.W.B. 1964 Phys. Rev. 133, A705.CrossRefGoogle Scholar
Esarey, E. et al. 1993 Phys. Rev. E 48, 3003.CrossRefGoogle Scholar
Jackson, J.D. 1975 Classical Electrodynamics, 2nd ed. (John Wiley, New York).Google Scholar
Kim, K.J. 1989 AIP Conf. Proc. I, 565.Google Scholar
Longair, M.S. 1992 High Energy Astrophysics, Vol. I, Particles, Photons and their Detection, 2nd ed. (Cambridge University Press, New York).Google Scholar
Mohideen, U. et al. 1992 J. Opt. Soc. Am. B 9, 2190.CrossRefGoogle Scholar
Prudnikov, A.P. et al. 1986 Integrals and Series, Vol. 1. (Gordon and Breach Science Publ., New York).Google Scholar
Ride, S. et al. 1995 Phys. Rev. E 52, 5425.CrossRefGoogle Scholar
Roberson, C.W. & Sprangle, P. 1989 Phys. Fluids B 1, 3.CrossRefGoogle Scholar
Sarachik, E.S. & Schappert, G.T. 1970 Phys. Rev. D 1, 2738.CrossRefGoogle Scholar
JrSchill, R.A. & McCrea, E. 1997 Laser Part. Beams 15, 179.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. 1992 Phys. Fluids B 4, 2241.CrossRefGoogle Scholar
Sprangle, P. et al. 1989 Appl. Phys. Lett. 55, 2559.CrossRefGoogle Scholar
Sprangle, P. et al. 1992 J. Appl. Phys. 72, 5032.CrossRefGoogle Scholar
Tran, T.M. et al. 1987 IEEE J. Quant. Electron. QE-23, 1578.CrossRefGoogle Scholar
Tucker, W.H. 1975 Radiation Processes in Astrophysics. (MIT Press, Cambridge).Google Scholar
Vachaspati, 1962 Phys. Rev. 128, 664.CrossRefGoogle Scholar