Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T05:41:43.725Z Has data issue: false hasContentIssue false

A new nonheated copper vapor laser

Published online by Cambridge University Press:  09 March 2009

Ariold Ludmirsky
Affiliation:
Soreq Nuclear Research Centre, Yavne, 70600, Israel.

Abstract

A new method for decreasing the operating temperature of copper vapor lasers (CVL) by pulsed injection of pure metal vapor into the active volume of the laser is described. The inductively produced copper plasma is accelerated by a pulsed magnetic field. As a result the laser operates at room temperature in a double-pulse mode. The population densities of both the ground and metastable states of copper atoms were derived from optical absorption measurements. The metastable level density decays rapidly while the ground-state densities exist up to 2 msec without noticeable changes. The scaling of this type of laser was studied. A 24 mJ output laser pulse of 65 ns duration was obtained for a laser tube 90 cm long and 10 cm bore. The advantages of the new CVL are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. S., Warner, B. E., Larson, C. Sr. & Grove, R. E. 1981 CLEO Conf.1981.Wash. D.C., Opt. Soc. of Am.Google Scholar
Asmus, J. F. & Moncur, N. K. 1968 Appl. Phys. Lett. 13, 384.CrossRefGoogle Scholar
Bokhan, P. A. & Gerasimov, V. A. 1979 Sov. J. Quant. Electron. 9, 273.CrossRefGoogle Scholar
Bokhan, P. A., Burlakov, V. D., Gerasimov, V. A. & Solomonov, V. I. 1979 Sov. J. Quant. Electron. 6, 672.CrossRefGoogle Scholar
Bricks, B. G., Karras, T. W. & Anderson, R. S. 1978. J. Appl. Phys. 49, 38.CrossRefGoogle Scholar
Bricks, B. G. & Karras, T. W. 1979 Internat Conf. on Lasers, 79 Orlando,Florida, Proceedings.Google Scholar
Chen, C. J., Nerheim, N. M. & Russell, G. R. 1973. Appl. Phys. Lett. 23, 514.CrossRefGoogle Scholar
Chen, C. J. & Russell, R. G. 1975 Appl. Phys. Lett. 26, 504.CrossRefGoogle Scholar
Cohen, Ch. 1981. Private Communication.Google Scholar
Isaev, A. A., Kazaryan, M. A. & Petrach, G. G. 1972 JETP Lett. 16, 27.Google Scholar
Isaev, A. A., Kislin, V. M. & Petrash, G. G. 1970 Preprint, FIAN, 81 (in Russian).Google Scholar
Isakov, I. M. & Leonov, A. G. 1976 Sou. Tech. Phys. Lett. 2, 339.Google Scholar
Karras, T. W. 1981 Proceedings of AGARD 29th Symposium,Monterey, CA.Google Scholar
Leonard, D. A. 1967 IEEE, J. Quant. Electron. QE-3, 380.CrossRefGoogle Scholar
Liberman, I., Babcock, R. V., Liu, C. S., George, T. V. & Weaver, L. A. 1974 Appl. Phys. Leu. 25, 334.CrossRefGoogle Scholar
Ludmirsky, A. 1980 Metal Vapor Laser, Israel Patent 51748.Google Scholar
Ludmirsky, A. 1981 Metal Vapor Laser, U.S. Patent 4, 295, 103.Google Scholar
Ludmirsky, A., Cohen, Ch. & Kagan, Yu. M. 1979a. Appl. Opt. 18, 545.CrossRefGoogle Scholar
Ludmirsky, A., Cohen, Ch. & Kagan, Yu. M. 1979b. XIV International Conference on Ionized Gases,Grenoble, 9–13,July 1979.Google Scholar
Ludmirsky, A., Cohen, Ch. & Kagan, Yu. M. 1980 Symposium SPIG 80, Dubrovnik 1980.Google Scholar
Markova, S. V., Petrash, G. G. & Cherezov, V. M. 1978 Sov. J. Quant. Electron. 8, 904.CrossRefGoogle Scholar
Platonov, A. V., Soldatov, A. N. & Filonov, A. G. 1978 Sov. J. Quant. Electron. 8, 120.CrossRefGoogle Scholar
Russell, G. R., Nerheim, N. M. & Prvirotto, T. J. 1972 Appl. Phys. Lett. 21, 565.CrossRefGoogle Scholar
Shukhtin, A. M., Fedotov, G. A. & Mishakov, V. G. 1976 Opt. Spektrosk. 40, 237.Google Scholar
Smilanski, I., Erez, G., Kerman, A. & Levin, L. A. 1979 Opt. Commun. 30, 70.CrossRefGoogle Scholar
Walter, W. T., Solimene, N., Piltch, M. & Gould, G. 1966 IEEE J. Quant. Electron. QE-2, 474.CrossRefGoogle Scholar
Warner, B. E. 1980 Lawrence Livermore National Laboratory, Laser Program Annual Report, UCRL-50021–80, Vol. 3.Google Scholar