Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T20:36:45.053Z Has data issue: false hasContentIssue false

Extreme ultraviolet holography using a laser-plasma source based on xenon/helium gas puff target

Published online by Cambridge University Press:  29 December 2017

P. Wachulak*
Affiliation:
Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
A. Sarzyński
Affiliation:
Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
A. Bartnik
Affiliation:
Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
T. Fok
Affiliation:
Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
H. Fiedorowicz
Affiliation:
Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
*
Author for correspondence: P. Wachulak, Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland. E-mail: [email protected]

Abstract

In this paper, we present the application of partially spatially coherent extreme ultraviolet (EUV) radiation from xenon plasma from a laser-plasma source, based on a double stream gas puff target, in coherent imaging. The radiation at the wavelength of 13.5 ± 0.5 nm was employed to record Gabor-type holograms. An iterative algorithm, based on a phase retrieval technique, was developed and used to remove the twin image from the reconstructed EUV image of test objects. Using partially coherent radiation from a compact, laser-plasma source based on a double stream gas puff target, which is intrinsically incoherent, a Gabor EUV holography was successfully demonstrated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adjei, D, Getachew Ayele, M, Wachulak, P, Bartnik, A, Wegrzynski, Ł, Fiedorowicz, H, Vyšín, L, Wiechec, A, Lekki, J, Kwiatek, WM, Pina, L, Davídková, M and Juha, L (2015) Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments. Nuclear Instruments and Methods in Physics Research Section B 364, 2732. doi: 10.1016/j.nimb.2015.08.065.Google Scholar
Attwood, DT (1999) Soft X-rays and Extreme Ultraviolet Radiation. New York: Cambridge University Press.Google Scholar
Bartels, RA, Paul, A, Green, H, Kapteyn, HC, Murnane, MM, Backus, S, Christov, IP, Liu, Y, Attwood, D and Jacobsen, C (2002) Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376378.Google Scholar
Bartnik, A, Lisowski, W, Sobczak, J, Wachulak, P, Budner, B, Korczyc, B and Fiedorowicz, H (2012) Simultaneous treatment of polymer surface by EUV radiation and ionized nitrogen. Applied Physics A 109(1), 3943.Google Scholar
Bartnik, A, Fedosejevs, R, Wachulak, P, Fiedorowicz, H, Serbanescu, C, Saiz, EG, Riley, D, Toleikis, S and Neely, D (2013) Photo-ionized neon plasmas induced by radiation pulses of a laser-plasma EUV source and a free electron laser FLASH. Laser and Particle Beams 31(2), 195201.CrossRefGoogle Scholar
Bartnik, A, Fiedorowicz, H and Wachulak, P (2014) Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses. Physics of Plasmas 21(7), 073303.Google Scholar
Chapman, HN, Fromme, P, Barty, A, White, TA, Kirian, RA, Aquila, A, Hunter, MS, Schulz, J, DePonte, DP, Weierstall, U, Doak, RB, Maia, FRNC, Martin, AV, Schlichting, I, Lomb, L, Coppola, N, Shoeman, RL, Epp, SW, Hartmann, R, Rolles, D, Rudenko, A, Foucar, L, Kimmel, N, Weidenspointner, G, Holl, P, Liang, M, Barthelmess, M, Caleman, C, Boutet, S, Bogan, MJ, Krzywinski, J, Bostedt, C, Bajt, S, Gumprecht, L, Rudek, B, Erk, B, Schmidt, C, Hömke, A, Reich, C, Pietschner, D, Strüder, L, Hauser, G, Gorke, H, Ullrich, J, Herrmann, S, Schaller, G, Schopper, F, Soltau, H, Kühnel, K, Messerschmidt, M, Bozek, JD, Hau-Riege, SP, Frank, M, Hampton, CY, Sierra, RG, Starodub, D, Williams, GJ, Hajdu, J, Timneanu, N, Seibert, MM, Andreasson, J, Rocker, A, Jönsson, O, Svenda, M, Stern, S, Nass, K, Andritschke, R, Schröter, C, Krasniqi, F, Bott, M, Schmidt, KE, Wang, X, Grotjohann, I, Holton, JM, Barends, TRM, Neutze, R, Marchesini, S, Fromme, R, Schorb, S, Rupp, D, Adolph, M, Gorkhover, T, Andersson, I, Hirsemann, H, Potdevin, G, Graafsma, H, Nilsson, B and Spence, JCH (2011) Femtosecond X-ray protein nanocrystallography. Nature 470(7332), 7377.Google Scholar
Denis, L, Fournier, C, Fournel, T and Ducottet, Ch (2005) Twin-image noise reduction by phase retrieval in in-line digital holography. Proceedings of SPIE 5914, 59140J. doi: 10.1117/12.617405.Google Scholar
Fiedorowicz, H, Bartnik, A, Jarocki, R, Kostecki, J, Krzywiński, J, Mikołajczyk, J, Rakowski, R, Szczurek, A and Szczurek, M (2005) Compact laser plasma EUV source based on a gas puff target for metrology applications. Journal of Alloys and Compounds 401(1–2), 99103. doi: 10.1016/j.jallcom.2005.02.069.Google Scholar
Goodman, JW (1985) Statistical Optics. New York: Wiley, pp. 171187.Google Scholar
Goodman, JW (2005) Introduction to Fourier Optics. Greenwood Village, CO: Roberts and Company Publishers.Google Scholar
Gorobtsov, OYu, Mercurio, G, Brenner, G, Lorenz, U, Gerasimova, N, Kurta, RP, Hieke, F, Skopintsev, P, Zaluzhnyy, I, Lazarev, S, Dzhigaev, D, Rose, M, Singer, A, Wurth, W and Vartanyants, IA (2017) Statistical properties of a free-electron laser revealed by Hanbury Brown–Twiss interferometry. Physical Review A 95, 023843.Google Scholar
Heinbuch, S, Grisham, M, Martz, D and Rocca, JJ (2005) Demonstration of a desk-top size high repetition rate soft x-ray laser. Optics Express 13(11), 40504055. doi: 10.1364/OPEX.13.004050.Google Scholar
Kubiak, GD, Bernardez, LJ and Krenz, KD (1998) High-power extreme-ultraviolet source based on gas jets. Proceedings of SPIE 3331, 81. doi: 10.1117/12.309560.Google Scholar
Latychevskaia, T and Fink, HW (2007) Solution to the twin image problem in holography. Physical Review Letters 98, 233901. doi: 10.1103/PHYSREVLETT.98.233901.CrossRefGoogle Scholar
Luu, TT and Wörner, HJ (2016) High-order harmonic generation in solids: a unifying approach. Physical Review B 94, 115164.Google Scholar
Malm, EB, Monserud, NC, Brown, CG, Wachulak, PW, Xu, H, Balakrishnan, G, Chao, W, Anderson, E and Marconi, MC (2013) Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object. Optics Express 21(8), 99599966.Google Scholar
Nishino, Y, Tanaka, Y, Okada, M, Okaya, M, Uozaki, Y, Nozaki, K, Yabashi, M, Nagasono, M, Tono, K and Kimura, H (2010) Femtosecond snapshot holography with extended reference using extreme ultraviolet free-electron laser. Applied Physics Express 3(10), 102701-13.Google Scholar
Nugent, KA (1990) Twin-image elimination in Gabor holography. Optics Communications 78, 293299.Google Scholar
Rakowski, R, Bartnik, A, Fiedorowicz, H, de Gaufridy de Dortan, F, Jarocki, R, Kostecki, J, Mikołajczyk, J, Ryć, L, Szczurek, M and Wachulak, P (2010) Characterization and optimization of the laser-produced plasma EUV source at 13.5 nm based on a double-stream Xe/He gas puff target. Applied Physics B 101(4), 773789.Google Scholar
Reagan, BA, Berrill, M, Wernsing, KA, Baumgarten, C, Woolston, M and Rocca, JJ (2014) High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths. Physical Review A 89, 053820. doi: 10.1103/PhysRevA.89.053820.Google Scholar
Seaberg, MD, Adams, DE, Townsend, EL, Raymondson, DA, Schlotter, WF, Liu, Y, Menoni, CS, Rong, L, Chen, C, Miao, J, Kapteyn, HC and Murnane, MM (2011) Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Optics Express 19(23), 22470.Google Scholar
Thompson, BJ and Wolf, E (1957) Two-beam interference with partially coherent light. Journal of the Optical Society of America 47, 895.Google Scholar
Wachulak, P, Sarzyński, A, Bartnik, A, Fok, T, Węgrzynski, Ł, Kostecki, J and Fiedorowicz, H (2017) Spatial coherence measurements of the EUV emission from laser-plasma source based on xenon/helium gas puff target. Applied Physics B 123, 216. doi: 10.1007s00340-017-6795-7.CrossRefGoogle Scholar
Wachulak, PW, Bartels, RA, Marconi, MC, Menoni, CS, Rocca, JJ, Lu, Y and Parkinson, B (2006) Sub 400 nm spatial resolution extreme ultraviolet holography with a table top laser. Optics Express 14(21), 9636.Google Scholar
Wachulak, PW, Marconi, MC, Bartels, RA, Menoni, CS and Rocca, JJ (2007) Volume extreme ultraviolet holographic imaging with numerical optical sectioning. Optics Express 15, 1062210628.Google Scholar
Wachulak, PW, Marconi, MC, Bartels, R, Menoni, CS and Rocca, JJ (2008) Soft X-ray holography with wavelength resolution. Journal of the Optical Society of America B 25(11), 18111814.Google Scholar
Wachulak, PW, Bartnik, A, Fiedorowicz, H, Feigl, T, Jarocki, R, Kostecki, J, Rakowski, R, Rudawski, P, Sawicka, M, Szczurek, M, Szczurek, A and Zawadzki, Z (2010) A compact, quasi-monochromatic laser-plasma EUV source based on a double-stream gas-puff target at 13.8 nm wavelength. Applied Physics B 100(3), 461469.Google Scholar
Wachulak, PW, Bartnik, A, Wegrzynski, L, Kostecki, J, Jarocki, R, Fok, T, Szczurek, M and Fiedorowicz, H (2013a) Sub 1-μm resolution “water-window” microscopy using a compact, laser-plasma SXR source based on a double stream gas-puff target. Nuclear Instruments and Methods in Physics Research Section B 311, 4246.Google Scholar
Wachulak, PW, Bartnik, A, Skorupka, M, Kostecki, J, Jarocki, R, Szczurek, M, Wegrzynski, L, Fok, T and Fiedorowicz, H (2013b) Water-window microscopy using a compact, laser-plasma SXR source based on a double-stream gas-puff target. Applied Physics B 111(2), 239247.Google Scholar
Wachulak, PW, Torrisi, A, Bartnik, A, Adjei, D, Kostecki, J, Wegrzynski, L, Jarocki, R, Szczurek, M and Fiedorowicz, H (2015) Desktop water window microscope using a double-stream gas puff target source. Applied Physics B 118(4), 573578. doi: 10.1007/s00340-015-6044-x.Google Scholar
Williams, GO, Gonzalez, AI, Künzel, S, Li, L, Lozano, M, Oliva, E, Iwan, B, Daboussi, S, Boutu, W, Merdji, H, Fajardo, M and Zeitoun, Ph (2015) Fourier transform holography with high harmonic spectra for attosecond imaging applications. Optics Letters 40(13), 32053208. doi: 10.1364/OL.40.003205.Google Scholar
Zhang, Y, Pedrini, G, Osten, W and Tiziani, HJ (2003) Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm. Optics Express 11(24), 3234.Google Scholar
Supplementary material: File

Wachulak et al supplementary material 1

Supplementary Videos

Download Wachulak et al supplementary material 1(File)
File 1.5 MB