Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:07:42.875Z Has data issue: false hasContentIssue false

Effect of thermal flux inhibition on the coupling of core with hot corona in a laser irradiated plasma pellet

Published online by Cambridge University Press:  09 March 2009

D. P. Singh
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7 56100 Pisa, Italy.
J. J. E. Herrera
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7 56100 Pisa, Italy.
M. Vaselli
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino, 7 56100 Pisa, Italy.

Abstract

The effect of thermal flux transport inhibition on the coupling of the spherical dense pellet core with the hot electron halo produced at the plasma resonance layer has been investigated. The analytic expressions for the core-corona coupling and the optimum temperature of the overlapping region (at which this coupling is maximum) have been derived as a function of ‘flux limit’ parameter and the laser wavelength. Relevant calculations indicate that the core-corona coupling is sensitive to the mean electron temperature and the scaling of its maximum value with the laser wavelength remains absolutely unaffected by plasma ablation. The subsequent results on laser wavelength scaling are compared and contrasted with the predictions of other investigations. The heat transfer from the hot electron cloud to the dense core can be increased by an order of magnitude in case of the uninhibited flux.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaterre, P. et al. 1985 Phys. Rev. A 32, (1), 324.CrossRefGoogle Scholar
Albritton, J. R. 1983 Phys. Rev. Lett. 50, 2078.CrossRefGoogle Scholar
Bell, A. R., 1985 Physics Fluids 28, 2007.CrossRefGoogle Scholar
Brueckner, K. A. and Lee, Y. T. 1979 Nuclear Fusion 19, 1431.CrossRefGoogle Scholar
Cicchitelli, L. et al. 1984 Laser Particle Beam, 2, 467.CrossRefGoogle Scholar
Ebrahim, N. A. et al. 1977 Phys. Rev. Lett. 43, 1995.CrossRefGoogle Scholar
Ehler, A. W. et al. 1980 J. Phys. D. Appl. Phys. 13, L65.CrossRefGoogle Scholar
Eliezer, S. et al. 1985 Laser Particle Beam, 3, 207.CrossRefGoogle Scholar
Fabbro, R. et al. 1982 Phys. Rev. A 26, 2289.CrossRefGoogle Scholar
Fabbro, R. & Mora, P. 1982 Phys. Lett. 90A, 48.CrossRefGoogle Scholar
Friedberg, J. P. et al. 1972 Phys. Rev. Lett. 28, 795.CrossRefGoogle Scholar
Garban-Labaune, C. et al. 1985 Physics Fluids 28, 2580.CrossRefGoogle Scholar
Goldsack, T. J. et al. 1982 Optics Commun., 42, 55.CrossRefGoogle Scholar
Goldsack, T. J. et al. 1982a Physics Fluids 25, 1634.CrossRefGoogle Scholar
Goldsworthy, M. P. et al. 1986 Transact. Plasma Sc. PS-14, 823.CrossRefGoogle Scholar
Hora, H. 1985 Laser Particle Beam 3, 59.CrossRefGoogle Scholar
Kephart, J. F. et al. 1974 Appl. Phys. Lett. 25, 108.CrossRefGoogle Scholar
Kidder, R. E. & Zink, J. W. 1972 Nuclear Fusion 12, 325.CrossRefGoogle Scholar
Kolodner, P. & Yablonvitch, E. 1976 Phys. Rev. Lett. 37, 1754.CrossRefGoogle Scholar
Malone, R. C.McCrory, R. L. & Morse, R. L. 1975 Phys. Rev. Lett. 34, 721.CrossRefGoogle Scholar
Marjoribanks, R. S. et al. 1980 Phys. Rev. Lett. 45, 1798.CrossRefGoogle Scholar
Mason, R. J. 1981 Phys. Rev. Lett. 47, 652.CrossRefGoogle Scholar
Max, C. E.McKee, C. F. & Mead, W. C. 1980 Physics Fluids 23, 1620.CrossRefGoogle Scholar
Richardson, M. C. 1986 in ‘Laser Interaction and Related Phenomena’ Edited by Hora, H. & Miley, G. H., 7, 624. Plenum, New York.Google Scholar
Spitzer, L. Jr. 1962 ‘Physics of Fully Ionized Gases’ 2nd Eds. Interscience, New York.Google Scholar
Yaakobi, B. & Bristow, T. C. 1977 Phys. Rev. Lett. 38, 350.CrossRefGoogle Scholar