Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T06:45:50.827Z Has data issue: false hasContentIssue false

Does the motor system contribute to the perception and understanding of actions? Reflections on Gregory Hickok’s The myth of mirror neurons: the real neuroscience of communication and cognition

Published online by Cambridge University Press:  02 December 2014

DAVID KEMMERER*
Affiliation:
Department of Speech, Language, and Hearing Sciences, Department of Psychological Sciences, Purdue University
*
Address for correspondence: David Kemmerer, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, West Lafayette, IN 47907. tel: (765) 494-3826; e-mail: [email protected]

Abstract

It has been said that mirror neurons are “the most hyped concept in neuroscience” (Jarrett, 2012). In his book The myth of mirror neurons: the real neuroscience of communication and cognition (2014), Gregory Hickok does the field a great service by cutting through this hype and showing that, contrary to the views of many laypeople as well as some experts, mirror neurons are not the fundamental ‘basis’ of action understanding. I argue here, however, that he takes his critique too far by effectively denying that the motor system plays any significant role at all in the perception and interpretation of actions. In fact, a large literature strongly supports the hypothesis that motor regions in the frontal and parietal lobes not only subserve the execution of actions, but also contribute to the comprehension of actions, regardless of whether they are directly observed or linguistically represented. In addition, recent research suggests that although the articulatory system is involved primarily in speech production, it enhances speech perception too, even when the auditory stimuli are not explicitly attended.

Type
Research Article
Copyright
Copyright © UK Cognitive Linguistics Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.Google Scholar
Ansuini, C., Cavallo, A., Bertone, C., & Becchio, C. (in press). Intentions in the brain: the unveiling of Mister Hyde. Neuroscientist.Google Scholar
Aravena, P., Courson, M., Frak, V., Cheylus, A., Paulignan, Y., Deprez, V., & Nazir, T. (2014). Action relevance in linguistic context drives word-induced motor activity. Frontiers in Human Neuroscience, 8, 163.Google Scholar
Aravena, P., Delevoye-Turrell, Y., Deprez, V., Cheylus, A., Paulignan, Y., Frak, V., & Nazir, T. (2012). Grip force reveals the context sensitivity of language-induced motor activity during ‘action word’ processing: evidence from sentential negation. PLoS ONE, 7, e50287.Google Scholar
Arévalo, A., Baldo, J. V., & Dronkers, N. F. (2012). What do brain lesions tell us about theories of embodied semantics and the human mirror neuron system? Cortex, 48, 242254.CrossRefGoogle ScholarPubMed
Avenanti, A., Candidi, M., & Urgesi, C. (2013). Vicarious motor activation during action perception: beyond correlational evidence. Frontiers in Human Neuroscience, 7, 185.Google Scholar
Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16, 18181823.CrossRefGoogle ScholarPubMed
Barchiesi, G., & Cattaneo, L. (2013). Early and late motor responses to action observation. Social, Cognitive, and Affective Neuroscience, 8, 711719.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2013). Mirroring as pattern completion inferences within situated conceptualizations. Cortex, 49, 29512953.CrossRefGoogle ScholarPubMed
Bartoli, E., D’Ausilio, A., Berry, J., Badino, L., Bever, T., & Fadiga, L. (in press). Listener–speaker perceived distance predicts the degree of contribution to speech perception. Cerebral Cortex.Google Scholar
Becchio, C., Cavallo, A., Begliomini, C., Sartori, L., Feltrin, G., & Castiello, U. (2012). Social grasping: from mirroring to mentalizing. NeuroImage, 61, 240248.CrossRefGoogle ScholarPubMed
Beilock, S. L., Lyons, I. M., Mattarella-Micke, A., Nusbaum, H. C., & Small, S. L. (2008). Sports experience changes the neural processing of action language. Proceedings of the National Academy of Sciences, 105, 1326913273.Google Scholar
Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527536.CrossRefGoogle ScholarPubMed
Bogart, K. R., & Matsumoto, D. (2010). Facial mimicry is not necessary to recognize emotion: facial expression recognition by people with Moebius syndrome. Social Neuroscience, 5, 241251.Google Scholar
Boulenger, V., Hauk, O., & Pulvermüller, F. (2009). Grasping ideas with the motor system: semantic somatotopy in idiom comprehension. Cerebral Cortex, 19, 19051914.Google Scholar
Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13, 400404.Google Scholar
Callan, D., Callan, A., & Jones, J. A. (2014). Speech motor brain regions are differentially recruited during perception of native and foreign-accented phonemes for first and second language listeners. Frontiers in Human Neuroscience, 8, 275.Google ScholarPubMed
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 19051910.Google Scholar
Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16, 6974.Google Scholar
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50, 11481167.CrossRefGoogle ScholarPubMed
Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17, 15271531.CrossRefGoogle ScholarPubMed
Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex, 20, 22522258.Google Scholar
Clerget, E., Winderickx, A., Fadiga, L., & Olivier, E. (2009). Role of Broca’s area in encoding sequential human actions: a virtual lesion study. Neuroreport, 20, 14961499.Google Scholar
Cook, R., Bird, G., Catmur, C., Press, C., & Heyes, C. (2014). Mirror neurons: from origin to function. Behavioral and Brain Sciences, 37, 177241.Google Scholar
Cross, E. S., Hamilton, A., Kraemer, D. J. M., Kelley, W. M., & Grafton, S. T. (2009a). Dissociable substrates for body motion and physical experience in the human action observation network. European Journal of Neuroscience, 30, 13831392.Google Scholar
Cross, E. S., Kraemer, D. J. M., De, A. F., Hamilton, A., Kelley, W. M., & Grafton, S. T. (2009b). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315326.Google Scholar
Dalla Volta, R., Fabbri-Destro, M., & Gentilucci, M. (2014). Spatiotemporal dynamics during processing of abstract and concrete verbs: an ERP study. Neuropsychologia, 61, 163174.Google Scholar
Damasio, A., & Meyer, K. (2008). Behind the looking glass. Nature, 454, 167168.CrossRefGoogle ScholarPubMed
Davis, M. H., & Johnsrude, I. S. (2007). Hearing speech sounds: top-down influences on the interface between audition and speech perception. Hearing Research, 229, 132147.Google Scholar
De Grauwe, S., Willems, R. M., Rueschemeyer, S. A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: neural correlates of processing motor verbs. Neuropsychologia, 56, 334349.CrossRefGoogle ScholarPubMed
Desai, R., Binder, J. R., Conant, L. L., & Seidenberg, M. S. (2010). Activation of sensory-motor areas in sentence comprehension. Cerebral Cortex, 20, 468478.Google Scholar
Desai, R., Conant, L. L., Binder, J. R., Park, H., & Seidenberg, M. S. (2013). A piece of the action: modulation of sensory-motor regions by action idioms and metaphors. NeuroImage, 83, 862869.Google Scholar
De Zubicaray, G., Arciuli, J., & McMahon, K. (2013). Putting an ‘end’ to the motor cortex representations of action words. Journal of Cognitive Neuroscience, 25, 19571974.Google Scholar
Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91, 176180.Google Scholar
Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2014). Noise differentially impacts phoneme representations in the auditory and speech motor systems. Proceedings of the National Academy of Sciences, 111, 71267131.CrossRefGoogle ScholarPubMed
Eskenazi, T., Grosjean, M., Humphreys, G. W., & Knoblich, G. (2009). The role of motor simulation in action perception: a neuropsychological case study. Psychological Research, 73, 477485.Google Scholar
Filimon, F., Nelson, J. D., Hagler, D. J., & Sereno, M. I. (2007). Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage, 37, 13151328.Google Scholar
Filipovic, L. (2007). Talking about motion. Amsterdam: John Benjamins.Google Scholar
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381391.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662767.Google Scholar
Gerfo, E. L., Oliveri, M., Torriero, S., Salerno, S., Koch, G., & Caltagirone, C. (2008). The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects. Neuropsychologia, 46, 764770.Google Scholar
Gilaie-Dotan, S., Kanai, R., Bahrami, B., Rees, G., & Saygin, A. P. (2013). Structural neural correlates of biological motion detection ability. Neuropsychologia, 51, 457463.CrossRefGoogle Scholar
Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Human Brain Mapping, 12, 119.Google Scholar
Halsband, U., Schmitt, J., Weyers, M., Binkofski, F., Grützner, G., & Freund, H. J. (2001). Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: a perspective on apraxia. Neuropsychologia, 39, 200216.Google Scholar
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301307.Google Scholar
Hauk, O., & Pulvermüller, F. (2004). Neurophysiological distinction of action words in the fronto-central cortex. Human Brain Mapping, 21, 191201.Google Scholar
Hickok, G. (2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13, 135145.CrossRefGoogle ScholarPubMed
Hickok, G. (2014a). The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition, and Neuroscience, 29, 220.CrossRefGoogle ScholarPubMed
Hickok, G. (2014b). Towards an integrated psycholinguistic, neurolinguistic, and sensorimotor framework for speech production. Language, Cognition, and Neuroscience, 29, 5259.Google Scholar
Hickok, G., Houde, J., & Rong, F. (2011). Sensorimotor integration in speech processing: computational basis and neural organization. Neuron, 69, 407422.Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393402.Google Scholar
Jacquet, P., & Avenanti, A. (in press). Perturbing the action observation network during perception and categorization of actions’ goals and grips: state-dependency and virtual lesion TMS effects. Cerebral Cortex.Google Scholar
Jarrett, C. (2012). Mirror neurons: the most hyped concept in neuroscience? Psychology Today, 10 December 10, 2012.Google Scholar
Jastorff, J., Begliomini, C., Fabbri-Destro, M., Rizzolatti, G., & Orban, G. A. (2010). Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. Journal of Neurophysiology, 104, 128140.Google Scholar
Kemmerer, D. (2006). Action verbs, argument structure constructions, and the mirror neuron system. In Arbib, M. (Ed.), Action to language via the mirror neuron system (pp. 347373). Cambridge: Cambridge University Press.Google Scholar
Kemmerer, D. (2012). The cross-linguistic prevalence of SOV and SVO word orders reflects the sequential and hierarchical representation of action in Broca’s area. Language and Linguistics Compass, 6, 5066.Google Scholar
Kemmerer, D. (2014). Visual and motor features of action verbs: a cognitive neuroscience perspective. In de Almeida, R. G. & Manouilidou, C. (Eds.), Cognitive science perspectives on verb representation and processing. New York: Springer.Google Scholar
Kemmerer, D. (in press). Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychonomic Bulletin and Review.Google Scholar
Kemmerer, D., & Gonzalez-Castillo, J. (2010). The Two-Level Theory of verb meaning: an approach to integrating the semantics of action with the mirror neuron system. Brain and Language, 112, 5476.Google Scholar
Kemmerer, D., Gonzalez-Castillo, J., Talavage, T., Patterson, S., & Wiley, C. (2008). Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. Brain and Language, 107, 1643.Google Scholar
Kemmerer, D., Miller, L., MacPherson, M. K., Huber, J., & Tranel, D. (2013). An investigation of semantic similarity judgments about action and non-action verbs in Parkinson’s disease: implications for the Embodied Cognition Framework. Frontiers in Human Neuroscience, 7, 146.Google Scholar
Kemmerer, D., Rudrauf, D., Manzel, K., & Tranel, D. (2012). Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex, 48, 826848.Google Scholar
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processes, 8, 159166.Google Scholar
Kilner, J. M., & Lemon, R. N. (2013). What we know currently about mirror neurons. Current Biology, 23, R1057R1062.Google Scholar
Klepp, A., Weissler, H., Niccolai, V., Terhalle, A., Geisler, H., Schnitzler, A., & Biermann-Ruben, K. (2014). Neuromagnetic hand and foot motor sources recruited during action verb processing. Brain and Language, 128, 4152.Google Scholar
Koenig, J. P., Mauner, G., Bienvenue, B., & Conklin, K. (2008). What with? The anatomy of a (proto)-role. Journal of Semantics, 25, 175220.Google Scholar
Kuipers, J. R., van Koningsbruggen, M., & Thierry, G. (2013). Semantic priming in the motor cortex: evidence from combined repetitive transcranial magnetic stimulation and event-related potentials. Neuroreport, 24, 646651.Google Scholar
Lametti, D. R., Rochet-Capellan, A., Neufeld, E., Shiller, D. M., & Ostroy, D. J. (2014). Plasticity in the human speech motor system drives changes in speech perception. Journal of Neuroscience, 34, 1033910346.Google Scholar
Lebois, L. A. M., Wilson-Mendenhall, C. D., & Barsalou, L. W. (in press). Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects. Cognitive Science.Google Scholar
Lestou, V., Pollick, F. E., & Kourtzi, Z. (2008). Neural substrates for action understanding at different description levels in the human brain. Journal of Cognitive Neuroscience, 20, 324341.Google Scholar
Levin, B. (1993). English verb classes and alternations. Chicago: University of Chicago Press.Google Scholar
Levinson, S. C., & Wilkins, D. (Eds.) (2006). Grammars of space: explorations in cognitive diversity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Liebenthal, E., Sabri, M., Beardsley, S. A., Mangalathu-Arumana, J., & Desai, A. (2013). Neural dynamics of phonological processing in the dorsal auditory stream. Journal of Neuroscience, 33, 1541415424.Google Scholar
Locatelli, M., Gatti, R., & Tettamanti, M. (2012). Training of manual actions improves language understanding of semantically related action sentences. Frontiers in Psychology, 3, 547.Google Scholar
Lyons, I. M., Mattarella-Micke, A., Cieslak, M., Nusbaum, H. C., & Small, S. L. (2010). The role of personal experience in the neural processing of action-related language. Brain and Language, 112, 214222.Google Scholar
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology–Paris, 102, 5970.Google Scholar
Makris, S., & Urgesi, C. (in press). Neural underpinnings of superior action prediction abilities in soccer players. Social, Cognitive, and Affective Neuroscience.Google Scholar
Malt, B. C., Gennari, S., Imai, M., Ameel, E., Tsuda, N., & Majid, A. (2008). Talking about walking: biomechanics and the language of locomotion. Psychological Science, 19, 232240.CrossRefGoogle ScholarPubMed
Mayka, M. A., Corcos, D. M., Leurgans, S. E., & Vaillancourt, D. E. (2006). Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. NeuroImage, 31, 14531474.Google Scholar
Michael, J., Sandberg, K., Skewes, J., Wolf, T., Blicher, J., Overgaard, M., & Frith, C. D. (2014). Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding. Psychological Science, 25, 963972.Google Scholar
Mirabella, G., Iaconelli, S., Spadacenta, S., Federico, P., & Gallese, V. (2012). Processing of hand-related verbs specifically affects the planning and execution of arm reaching movements. PLoS ONE, 7, e35403.Google Scholar
Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies. Neuroscience and Biobehavioral Reviews, 36, 341349.Google Scholar
Moody-Triantis, C., Humphreys, G. F., & Gennari, S. P. (2014). Hand specific representations in language comprehension. Frontiers in Human Neuroscience, 8, 360.Google Scholar
Moro, V., Urgesi, C., Pernigo, S., Lanteri, P., Pazzaglia, M., & Aglioti, S. M. (2008). The neural basis of body action agnosia. Neuron, 60, 235246.Google Scholar
Möttönen, R., Dutton, R., & Watkins, K. E. (2013). Auditory-motor processing of speech sounds. Cerebral Cortex, 23, 11901197.Google Scholar
Möttönen, R., van de Ven, G. M., & Watkins, K. E. (2014). Attention fine-tunes auditory-motor processing of speech sounds. Journal of Neuroscience, 34, 40644069.Google Scholar
Näätänen, R., Tervaniemi, M., Sussman, E.Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex. Trends in Neuroscience, 24, 283288.CrossRefGoogle ScholarPubMed
Negri, G. A. L., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z., & Caramazza, A. (2007). What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology, 24, 795816.Google Scholar
Papeo, L., Pascual-Leone, P. & Caramazza, A. (2013). Disrupting the brain to validate hypotheses on the neurobiology of language. Frontiers in Human Neuroscience, 7, 148.Google Scholar
Papeo, L., Rumiati, R. I., Cecchetto, C., & Tomasino, B. (2012). On-line changing of thinking about words: the effect of cognitive context on neural responses to verb reading. Journal of Cognitive Neuroscience, 24, 23482362.Google Scholar
Papeo, L., Vallesi, A., Isaja, A., & Rumiati, R. I. (2009). Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex. PLoS ONE, 4, e4508.Google Scholar
Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008). Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience, 28, 30303041.Google Scholar
Pobric, G., & Hamilton, A. F. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524529.Google Scholar
Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6, 576582.Google Scholar
Pulvermüller, F. (2013). How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences, 17, 458470.Google Scholar
Pulvermüller, F., Hauk, O., Nikulin, V., & Ilmoniemi, R. (2005a). Functional links between motor and language systems. European Journal of Neuroscience, 21, 793797.Google Scholar
Pulvermüller, F., Shtyrov, Y., & Illoniemi, R. (2005b). Brain signatures of meaning access in action word recognition. Journal of Cognitive Neuroscience, 17, 884892.Google Scholar
Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2009). Modulation of motor, premotor cortices by actions, action words, and action sentences. Neuropsychologia, 47, 388396.Google Scholar
Repetto, C., Colombo, B., Cipresso, P., & Riva, G. (2013). The effects of rTMS over the primary motor cortex: the link between action and language. Neuropsychologia, 51, 813.Google Scholar
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Review, 94, 655706.Google Scholar
Rogers, J. C., Möttönen, R., Boyles, R., & Watkins, K. E. (2014). Discrimination of speech and non-speech sounds following theta-burst stimulation of the motor cortex. Frontiers in Psychology, 5, 754.Google Scholar
Rueschemeyer, S. A., & Bekkering, H. (2013). Embodied lexical relations: flexible tools for predicting the future. In Coello, Y. & Bartolo, A. (Eds.), Language and action in cognitive neuroscience (pp. 111125). London: Psychology Press.Google Scholar
Sakreida, K., Schubotz, R. I., Wolfensteller, U., & von Cramon, D. Y. (2005). Motion class dependency in observers’ motor areas revealed by functional magnetic resonance imaging. Journal of Neuroscience, 25, 13351342.Google Scholar
Sato, M., Mengarelli, M., Riggio, L., Gallese, V., & Buccino, G. (2008). Task related modulation of the motor system during language processing. Brain and Language, 105, 8390.Google Scholar
Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130, 24522461.Google Scholar
Schuil, K. D. I., Smits, M., & Zwaan, R. A. (2013). Sentential context modulates the involvement of the motor cortex in action language processing: an fMRI study. Frontiers in Human Neuroscience, 7, 100.Google Scholar
Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 934.Google Scholar
Sehm, B., Schnitzler, T., Obleser, J., Groba, A., Ragert, P., Villringer, A., & Obrig, H. (2013). Facilitation of inferior frontal cortex by transcranial direct current stimulation induces perceptual learning of severely degraded speech. Journal of Neuroscience, 33, 1586815878.Google Scholar
Serino, A., De Filippo, L., Casavecchia, C., Coccia, M., Shiffrar, M., & Ladavas, E. (2010). Lesions to the motor system affect action perception. Journal of Cognitive Neuroscience, 22, 413426.Google Scholar
Shtyrov, Y., Butorina, A., Nikolaeva, A., & Stroganova, T. (2014). Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension. Proceedings of the National Academy of Sciences, E1918E1923.Google ScholarPubMed
Slobin, D. I. (2000). Verbalized events: a dynamic approach to linguistic relativity and determinism. In Niemeier, S. & Dirven, R. (Eds.), Evidence for linguistic relativity (pp. 107138). Amsterdam: John Benjamins.Google Scholar
Slobin, D. I. (2006). What makes manner of motion salient? Explorations in linguistic typology, discourse, and cognition. In Hickmann, M. & Robert, S. (Eds.), Space in languages: linguistic systems and cognitive categories (pp. 5982). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Smalle, E. H. M., Rogers, J., & Möttönen, R. (in press). Dissociating contributions of the motor cortex to speech perception and response bias by using transcranial magnetic stimulation. Cerebral Cortex.Google Scholar
Spunt, R. P., & Lieberman, M. D. (2012). Dissociating modality-specific and supramodal systems for action understanding. Journal of Neuroscience, 32, 35753583.Google Scholar
Taylor, L. J., & Zwaan, R. A. (2009). Action in cognition: the case of language. Language and Cognition, 1, 4558.Google Scholar
Tidoni, E., Borgomaneri, S., di Pellegrino, G., & Avenanti, A. (2013). Action simulation plays a critical role in deceptive action recognition. Journal of Neuroscience, 33, 611623.Google Scholar
Tomasino, B., & Rumiati, R. I. (2013). At the mercy of strategies: the role of motor representations in language understanding. Frontiers in Psychology, 4, 27.Google Scholar
Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H., & Damasio, A. (2003). Neural correlates of conceptual knowledge for actions. Cognitive Neuropsychology, 20, 409432.Google Scholar
Tranel, D., Manzel, K., Asp, E., & Kemmerer, D. (2008). Naming static and dynamic actions: neuropsychological evidence. Journal of Physiology–Paris, 102, 8094.CrossRefGoogle ScholarPubMed
Ubaldi, S., Barchiesi, G., & Cattaneo, L. (in press). Bottom-up and top-down responses to action observation. Cerebral Cortex.Google Scholar
Urgesi, C., Calvo-Merino, B., Haggard, P., & Aglioti, S. M. (2007a). Transcranial magnetic stimulation reveals two cortical pathways for visual body processing. Journal of Neuroscience, 27, 80238030.Google Scholar
Urgesi, C., Candidi, M., & Avenanti, A. (2014). Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients. Frontiers in Human Neuroscience, 8, 344.Google Scholar
Urgesi, C., Candidi, M., Ionta, S., & Aglioti, S. M. (2007b). Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neuroscience, 10, 3031.Google Scholar
van Kemenade, B. M., Muggleton, N., Walsh, V., & Saygin, A. P. (2012). The effects of TMS over STS and premotor cortices on the perception of biological motion. Journal of Cognitive Neuroscience, 24, 896904.Google Scholar
Van Overwalle, F. (2009). Social cognition and the brain: a meta-analysis. Human Brain Mapping, 30, 829858.Google Scholar
Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. NeuroImage, 48, 564584.Google Scholar
Vingerhoets, G., Honoré, P., Vandekerckhove, E., Nys, J., Vandemaele, P. & Achten, E. (2010). Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience, 169, 11581167.Google Scholar
Watson, C. E., Cardillo, E. R., Ianni, G. R., & Chatterjee, A. (2013). Action concepts in the brain: an activation-likelihood estimation meta-analysis. Journal of Cognitive Neuroscience, 25, 11911205.Google Scholar
Wheaton, K. J., Thompson, J. C., Syngeniotis, A., Abbott, D. F., & Puce, A. (2004). Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage, 22, 277288.Google Scholar
Willems, R. M., & Casasanto, D. (2011). Flexibility in embodied language understanding. Frontiers in Psychology, 2, 116.Google Scholar
Willems, R. M., & Francken, J. C. (2012). Embodied cognition: taking the next step. Frontiers in Psychology, 3, 582.Google Scholar
Willems, R. M., Labruna, L., D’Esposito, M., Ivry, R., & Casasanto, D. (2011). A functional role for the motor system in language understanding: evidence from theta burst TMS. Psychological Science, 22, 849854.Google Scholar
Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460473.Google Scholar
Zwaan, R. (2014). Embodiment and language comprehension: reframing the discussion. Trends in Cognitive Sciences, 18, 229234.Google Scholar