Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T09:19:05.609Z Has data issue: false hasContentIssue false

Growth and home range size of the gracile mouse opossum Gracilinanus microtarsus (Marsupialia: Didelphidae) in Brazilian cerrado

Published online by Cambridge University Press:  29 January 2010

Fernanda Rodrigues Fernandes*
Affiliation:
Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Parasitologia, Caixa Postal 6109, Campinas, São Paulo, 13083-970, Brazil
Leonardo Dominici Cruz
Affiliation:
Programa de Pós-graduação em Ciências Biológicas (Zoologia), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
Eduardo Guimarães Martins
Affiliation:
Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
Sérgio Furtado dos Reis
Affiliation:
Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
*
1Corresponding author. Email: [email protected]

Abstract:

Differences in growth patterns between the sexes of the gracile mouse opossum Gracilinanus microtarsus and the consequences for home range size were investigated in a savanna habitat (cerrado) of south-eastern Brazil. A total of 51 juvenile individuals of Gracilinanus microtarsus was monitored using capture–mark–recapture from November 2005 to August 2006. The increase in body mass of gracile mouse opossums was described using the Gompertz growth model. Male gracile mouse opossums grew faster than females (dimorphic ratio of 1.5). Home range size, estimated with the minimum convex polygon method, was positively related to body mass. Model selection using Akaike's Information Criterion (AICc) and incorporating body mass, sex and season as independent variables showed that the best-supported model describing variance in home range sizes included only body mass. Our data suggest that a greater body mass gain in juvenile males is probably the proximate cause of sexual dimorphism in adult gracile mouse opossums and that energetic needs required for growth have a greater influence in home range size.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

2Current address: Department of Forest Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

References

LITERATURE CITED

BADYAEV, A. V. 2002. Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology and Evolution 17:369378.CrossRefGoogle Scholar
BEGALL, S. 1997. The application of the Gompertz model to describe body growth. Growth, Development and Aging 61:6167.Google Scholar
BELCHER, C. A. & DARRANT, J. P. 2004. Home range and spatial organization of the marsupial carnivore, Dasyurus maculatus maculatus (Marsupialia: Dasyuridae) in south-eastern Australia. Journal of Zoology 262:271280.Google Scholar
BLACKWELL, G. L., BASSETT, S. M. & DICKMAN, C. R. 2006. Measurement error associated with external measurements commonly used in small-mammal studies. Journal of Mammalogy 87:216223.Google Scholar
BLANCKENHORN, W. U. 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111:9771016.CrossRefGoogle Scholar
BOONSTRA, R. 2005. Equipped for life: the adaptive role of the stress axis in male mammals. Journal of Mammalogy 86:236247.CrossRefGoogle Scholar
BROOME, L. S. 2001. Density, home range, seasonal movements and habitat use of the mountain pygmy-possum Burramys parvus (Marsupialia: Burramyidae) at Mount Blue Cow, Kosciusko National Park. Austral Ecology 26:275292.Google Scholar
BURNHAM, K. P. & ANDERSON, D. R. 1998. Model selection and multimodel inference: a practical information-theoretic approach. (Second edition). Springer, New York. 488 pp.CrossRefGoogle Scholar
BURT, W. H. 1943. Territoriality and home ranges concepts as applied to mammals. Journal of Mammalogy 24:346352.CrossRefGoogle Scholar
CÁCERES, N. C. & MONTEIRO-FILHO, E. L. A. 2001. Food habits, home range and activity of Didelphis aurita (Mammalia, Marsupialia) in a forest fragment of Southern Brazil. Studies on Neotropical Fauna and Environment 36:8592.CrossRefGoogle Scholar
CÁCERES, N. C., NAPOLI, R. P., LOPES, W. H., CASELLA, J. & GAZETA, G. S. 2007. Natural history of the marsupial Thylamys macrurus (Mammalia, Didelphidae) in fragments of savannah in southwestern Brazil. Journal of Natural History 41:19791988.Google Scholar
CEDERLUND, G. & SOURCE, H. S. 1994. Home-range size in relation to age and sex in moose. Journal of Mammalogy 75:10051012.Google Scholar
COSTA, L. P., LEITE, Y. L. R. & PATTON, J. L. 2003. Phylogeography and systematic notes on two species of gracile mouse opossums, genus Gracilinanus (Marsupialia: Didelphidae) from Brazil. Proceedings of the Biological Society of Washington 116:275292.Google Scholar
COX, R. M., SKELLY, S. L. & JOHN-ALDER, H. B. 2003. A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution 57:16531669.Google Scholar
DAHLE, B. & SWENSON, J. E. 2003. Home ranges in adult Scandinavian brown bears (Ursus arctos): effects of mass, sex, reproductive category, population density and habitat type. Journal of Zoology 260:329335.Google Scholar
DAHLE, B., OLE-GUNNAR, S. & SWENSON, J. E. 2006. Factors influencing home-range size in subadult brown bears. Journal of Mammalogy 87:859865.CrossRefGoogle Scholar
DOBSON, A. J. 2002. An introduction to generalized linear models. (Second edition). Chapman & Hall, Boca Raton. 225 pp.Google Scholar
FOSTER, W. K. & TAGGART, D. A. 2008. Gender and parental influences on the growth of a sexually dimorphic carnivorous marsupial. Journal of Zoology 275:221228.Google Scholar
GETZ, L. L. & MCGUIRE, B. 2008. Factors influencing movement distances and home ranges of the Short-tailed Shrew (Blarina brevicauda). Northeastern Naturalist 15:293302.Google Scholar
GOODLAND, R. 1971. A physiognomic analysis of the ‘cerrado’ vegetation of Central Brasil. Journal of Ecology 59:411419.CrossRefGoogle Scholar
HARESTAD, A. S. & BUNNEL, F. L. 1979. Home range and body weight – a reevaluation. Ecology 60:389402.Google Scholar
HOLLELEY, C. E., DICKMAN, C. R., CROWTHER, M. S. & OLDROYD, B. P. 2006. Size breeds success: multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii. Molecular Ecology 15:34393448.CrossRefGoogle Scholar
IMS, R. A. 1987. Responses in spatial organization and behaviour to manipulations of the food resource in the vole Clethrionomys rufocanus. Journal of Animal Ecology 56:585596.CrossRefGoogle Scholar
ISAAC, J. L. 2006. Sexual dimorphism in a marsupial: seasonal and lifetime differences in sex-specific mass. Australian Journal of Zoology 54:4550.Google Scholar
KELT, D. A. & VAN VUREN, D. 1999. Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80:337340.CrossRefGoogle Scholar
KELT, D. A. & VAN VUREN, D. 2001. The ecology and macroecology of mammalian home range area. American Naturalist 157:637645.Google Scholar
KIE, J. G., BALDWIN, J. A. & EVANS, C. J. 1996. CALHOME: a program for estimating animal home ranges. Wildlife Society Bulletin 24:342344.Google Scholar
KOSKELA, E., HUITU, O., KOIVULA, M., KORPIMÄKI, E. & MAPPES, T. 2004. Sex-biased maternal investment in voles: importance of environment conditions. Proceedings of the Royal Society of London, B. Biological Sciences 271:13851391.Google Scholar
KREBS, J. R. & DAVIES, N. B. 1981. An introduction to behavioural ecology. Blackwell Scientific Press, Oxford. 292 pp.Google Scholar
LAMBERT, M. S., QUY, R. J., SMITH, R. H. & COWAN, D. P. 2008. The effect of habitat management on home-range size and survival of rural Norway rat populations. Journal of Applied Ecology 45:17531761.Google Scholar
LEE, A. K. & COCKBURN, A. 1985. Evolutionary ecology of marsupials. Cambridge University Press, New York. 274 pp.Google Scholar
LESMEISTER, D. B., GOMPPER, M. E. & MILLSPAUGH, J. J. 2009. Habitat selection and home range dynamics of Eastern Spotted Skunks in the Ouachita Mountains, Arkansas, USA. Journal of Wildlife Management 73:1825.Google Scholar
LINDENFORS, P., GITTLEMAN, J. L. & JONES, K. E. 2007. Sexual size dimorphism in mammals. Pp. 1626 in Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. (eds.). Sex, size, and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, New York.Google Scholar
LINSTEDT, S. L., MILLER, B. J. & BUSKIRK, S. W. 1986. Home range, time, and body size in mammals. Ecology 67:413418.Google Scholar
LORETTO, D. & VIEIRA, M. V. 2005. The effects of reproductive and climatic seasons on movements in the Black-eared opossum (Didelphis aurita Wied-Neuwied, 1826). Journal of Mammalogy 86:287293.Google Scholar
LORETTO, D. & VIEIRA, M V. 2008. Use of space by the marsupial Marmosops incanus (Didelphimorphia, Didelphidae) in the Atlantic Forest, Brazil. Mammalian Biology 73:255261.Google Scholar
LUCHERINI, M. & LOVARI, S. 1996. Habitat richness affects home range size in the red fox Vulpes vulpes. Behavioural Processes 36:103106.CrossRefGoogle ScholarPubMed
MARTINS, E. G. & BONATO, V. 2004. On the diet of Gracilinanus microtarusus (Marsupialia, Didelphidae) in an Atlantic Rainforest fragment in southeastern Brazil. Mammalian Biology 69:5860.Google Scholar
MARTINS, E. G., BONATO, V., DA-SILVA, C. Q. & REIS, S. F. 2006a. Seasonality in reproduction, age structure and density of the gracile mouse opossum Gracilinanus microtarsus (Marsupialia: Didelphidae) in a Brazilian cerrado. Journal of Tropical Ecology 22:461468.CrossRefGoogle Scholar
MARTINS, E. G., BONATO, V., PINHEIRO, H. P. & REIS, S. F. 2006b. Diet of the gracile mouse opossum (Gracilinanus microtarsus) (Didelphimorphia: Didelphidae) in a Brazilian cerrado: patterns of food consumption and intrapopulation variation. Journal of Zoology 269:2128.CrossRefGoogle Scholar
MARTINS, E. G., BONATO, V., DA-SILVA, C. Q. & REIS, S. F. 2006c. Partial semelparity in the neotropical didelphid marsupial Gracilinanus microtarsus. Journal of Mammalogy 87:915920.Google Scholar
McCULLAGH, P. & NELDER, J. A. 1989. Generalized linear models. (Second edition). Chapman & Hall, New York. 532 pp.CrossRefGoogle Scholar
McNAB, B. K. 1963. Bioenergetics and the determination of home range size. American Naturalist 97:133140.CrossRefGoogle Scholar
MOHR, C. O. 1947. Table of equivalent populations of North American small mammals. American Midland Naturalist 37:223249.Google Scholar
MOORE, A. J. 1990. The evolution of sexual dimorphism by sexual selection: the separate effects of intrasexual selection and intersexual selection. Evolution 44:315331.CrossRefGoogle ScholarPubMed
MORAES-JÚNIOR, E. A. & CHIARELLO, A. G. 2005. A radio tracking study of home range and movements of the marsupial Micoureus demerarae (Thomas) (Mammalia, Didelphidade) in the Atlantic forest of south-eastern Brazil. Revista Brasileira de Zoologia 22:8591.CrossRefGoogle Scholar
OAKWOOD, M., BRADLEY, A. J. & COCKBURN, A. 2001. Semelparity in a large marsupial. Proceedings of the Royal Society of London, B. Biological Sciences 268:407411.CrossRefGoogle Scholar
OLIVEIRA-FILHO, A. T. & RATTER, J. A. 2002. Vegetation physiognomies and woody flora of the Cerrado biome. Pp. 91120 in Oliveira, P. S. & Marques, R. J. (eds). The cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York. 424 pp.CrossRefGoogle Scholar
PINHEIRO, F., DINIZ, I. R., COELHO, D. & BANDEIRA, M. P. S. 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecology 27:132136.CrossRefGoogle Scholar
SAFI, K., KÖNIG, B. & KERTH, G. 2007. Sex differences in population genetics, home range size and habitat use of the parti-colored bat (Vespertilio murinus, Linnaeus 1758) in Switzerland and their consequences for conservation. Biological Conservation 137:2836.CrossRefGoogle Scholar
SCHULTE-HOSTEDDE, A. E., MILLAR, J. S. & HICKLING, G. J. 2001. Sexual dimorphism in body composition of small mammals. Canadian Journal of Zoology 79:10161020.CrossRefGoogle Scholar
SHINE, R. 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Review of Biology 64:419461.Google Scholar
SODERQUIST, T. L. 1995. Spatial organization of the arboreal carnivorous marsupial Phascogale tapoatafa. Journal of Zoology 237:385398.CrossRefGoogle Scholar
SOKAL, R. R. & ROHLF, F. J. 1995. Biometry: the principles and practice of statistics in biological research. (Third edition). W. H. Freeman & Co, New York. 887 pp.Google Scholar
SOUZA, G. S. 1998. Introdução aos modelos de regressão linear e não linear. EMBRAPA/SPI, Brasília. 505 pp.Google Scholar
STRADIOTTO, A., CAGNACCI, F., DELAHAY, R., TIOLI, S., NIEDER, L. & RIZZOLI, A. 2009. Spatial organization of the yellow-necked mouse: effects of density and resource availability. Journal of Mammalogy 90:704714.Google Scholar
WECKERLY, F. 1998. Sexual-dimorphism: influence of body mass and mating systems in the most dimorphic mammals. Journal of Mammalogy 79:3352.Google Scholar