Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T11:46:11.908Z Has data issue: false hasContentIssue false

Morphometric variation in the shape of the cephalothorax of shrimp Xiphopenaeus kroyeri on the east coast of Brazil

Published online by Cambridge University Press:  19 April 2012

Fábio Guilherme Bissaro
Affiliation:
Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, CEP: 28013-600, Campos dos Goytacazes/RJ, Brasil
José Louvise Gomes-Jr
Affiliation:
Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Avenida Mal. Trompowski, s/n CCS, Bloco A, Ilha do Fundão CEP: 21941-902, Rio de Janeiro/RJ, Brasil
Ana Paula Madeira Di Beneditto*
Affiliation:
Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, CEP: 28013-600, Campos dos Goytacazes/RJ, Brasil
*
Correspondence should be addressed to: A.P.M. Di Beneditto, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego 2000, CEP: 28013-600, Campos dos Goytacazes/RJ, Brasil email: [email protected]

Abstract

The objective of this study was to analyse the differences in shape of the cephalothorax in four fishery stocks of sea-bob shrimp Xiphopenaeus kroyeri that are distributed on the east coast of Brazil, applying geometric morphometry as the analytical tool. Samples were collected at the fishing ports of Caravelas (17°43′S 39°15′W), Vitória (20°15′S 40°14′W), Atafona (21°35′S 41°01′W) and Farol de São Tomé (22°02′S 41°02′W), and variations in shape of the cephalothorax of the shrimps were evaluated by univariate and multivariate techniques. Analysis of variance followed by the Tukey test indicated that shrimps collected at the port of Farol de São Tomé were significantly smaller than the others, and size of individuals was inversely related to latitude. Discriminant analysis revealed the formation of two morphologically different groups between the areas of collection. Individuals collected in Caravelas, Vitória and Atafona, suffering permanent influence of freshwater discharge, associated with sandy–muddy substrate, constituted a different group compared to individuals collected in Farol de São Tomé, area without this kind of influence and with sandy substrate, where the average water temperature is lower and salinity is higher. Considering the commercial importance of the target species, the technique could be applied to its fisheries management. It allows the recognition of stocks and inference about the processes of fishing area occupation.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anastasiadou, C. and Leonardos, L.D. (2008) Morphological variation among populations of Atyaephyra desmarestii (Millet, 1831) (Decapoda: Caridea: Atyidae) from freshwater habitats of northwestern Greece. Journal of Crustacean Biology 28, 240247.CrossRefGoogle Scholar
Bauer, R.T. (1992) Testing generalizations about latitudinal variation in reproduction and recruitment patterns with sicyoniid and caridean shrimp species. Invertebrate Reproduction and Development 22, 193202.Google Scholar
Boschi, E.E. (1997) Las pesquerías de crustáceos decápodos en el litoral de La República Argentina. Investigaciones Marinas 25, 1940.CrossRefGoogle Scholar
Branco, J.O. (2005) Biologia e pesca do camarão sete barbas Xiphopenaeus kroyeri (Heller) (Crustacea, Penaeidae), na Armação do Itapocoroy, Penha, Santa Catarina, Brasil. Revista Brasileira de Zoologia 22, 10501062.Google Scholar
Branco, J.O., Lunardon-Branco, M.J., Souto, F.X. and Guerra, C.R. (1999) Estrutura populacional do camarão sete barbas Xiphopenaeus kroyeri (Heller, 1862), na foz do Rio Itajaí-Açu, Itajaí, SC, Brasil. Brazilian Archives of Biology and Technology 42, 115126.CrossRefGoogle Scholar
Bookstein, F.L. (1991) Morphometric tools for landmark data: geometry and biology. 1st edition. Cambridge: Cambridge University Press.Google Scholar
Cadrin, S.X. (2000) Advances in morphometric identification of fishery stock. Review of Fish Biology and Fisheries 10, 91112.Google Scholar
Campos, B.R., Dumont, L.F.C., D'incao, F. and Branco, J.O. (2009) Ovarian development and length at first maturity of the sea-bob-shrimp Xiphopenaeus kroyeri (Heller) based on histological analysis. Nauplius 17, 912.Google Scholar
Castilho, A.L., Gavio, M.A., Costa, R.C., Boschi, E.E., Bauer, R.T. and Fransozo, A. (2007) Latitudinal variation in population structure and reproductive pattern of the endemic South American shrimp Artemesia longinaris (Decapoda: Penaeoidea). Journal of Crustacean Biology 27, 548552.Google Scholar
Castilho, A.L., Pie, R.M., Fransozo, A., Pinheiro, A.P. and Costa, R. (2008) The relationship between environmental variation and species abundance in shrimp community (Crustacea: Decapoda: Penaeoidea) in south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdon 88, 119123.Google Scholar
Devries, D.A., Grimes, C.B. and Prager, M.H. (2002) Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fisheries Research 57, 5162.Google Scholar
Fernandes, L.P., Silva, A.C., Jardim, L.P., Keunecke, K.A. and Di Beneditto, A.P.M. (2011) Growth and recruitment of the Atlantic sea-bob shrimp, Xiphopenaeus kroyeri (Heller, 1862) (Decapoda, Penaeidae), on the coast of Rio de Janeiro, southeastern Brazil. Crustaceana 84, 14651480.Google Scholar
Francisco, A.K., Pinheiro, A.P., Silva, T.B. and Galetti, P.M. (2009) Isolation and characterization of microsatellites in three overexploited penaeid shrimp species along the Brazilian coastline. Conservation Genetics 10, 563566.Google Scholar
Gab-Alla, A.A., Hartnoll, R.G., Ghobashy, A.F. and Mohammed, S.Z. (1990) Biology of penaeid prawns in the Suez Canal lakes. Marine Biology 107, 417426.CrossRefGoogle Scholar
Geo Brasil (2002) Perspectivas do Meio Ambiente. Brasília, Editora do Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais e Renováveis. Available at: http://www.ibama.gov.br (accessed 10 February 2012).Google Scholar
Graça Lopes, R., Santos, E.P., Severino-Rodrigues, E., Braga, F.M.S. and Puzzi, A. (2007) Aportes ao conhecimento da biologia e da pesca do camarão-sete-barbas (Xiphopenaeus kroyeri Heller, 1862) no litoral do Estado de São Paulo, Brasil. Boletim do Instituto de Pesca 33, 6384.Google Scholar
Gulland, J.A. and Rothschild, B.J. (1981) Penaeid shrimps: their biology and management. 1st edition. Surrey: Fishing News Books.Google Scholar
Hartnoll, R.G. (1982) Growth. In Abele, L.G. (ed.) The biology of Crustacea: embryology, morphology and genetics. New York: Academic Press, pp. 111185.Google Scholar
Holthuis, L.B. (1980) Shrimp and prawns of the world. An annoted catalogue of species of interest to fisheries. Food and Agriculture Organization Technical Report, FAO Fisheries Synopsis, No. 125, Volume 1. Rome: FAO, 271 pp.Google Scholar
Hopkins, M.J. and Thurman, C.L. (2010) The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and Mexico. Biological Journal of the Linnaean Society 100, 248270.Google Scholar
Kamilari, M. and Sfenthourakis, S. (2009) A morphometric approach to the geographic variation of the terrestrial isopod species Armadillo tuberculatus (Isopoda: Oniscidea). Journal of Zoological Systematics and Evolution Research 47, 219226.Google Scholar
Konan, K.M., Adepo-Goureneb, A.B., Ouattaraa, A., Nyingyc, W.D. and Gourene, G. (2010) Morphometric variation among male populations of freshwater shrimp Macrobrachium vollenhovenii Herklots, 1851 from Côte d'Ivoire Rivers. Fisheries Research 103, 18.Google Scholar
MMA (Ministério do Meio Ambiente)–IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais e Renováveis) (2008) Estatística de pesca. Brasília: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais e Renováveis, 113 pp.Google Scholar
Mitteroecker, P. and Gunz, P. (2009) Advances in geometric morphometrics. Evolutionary Biology 36, 235247.Google Scholar
Monteiro, L.R. and Reis, S.F. (1999) Princípios de morfometria geométrica. 1st edition. Ribeirão Preto: Editora Holos.Google Scholar
Monteiro, L.R., Di Beneditto, A.P.M., Guillermo, L.H. and Rivera, L.A. (2005) Allometric changes and shape differentiation of sagittal otoliths in sciaenid fishes. Fisheries Research 74, 288299.CrossRefGoogle Scholar
Muehe, D. and Valentini, E. (1998) O litoral do estado do Rio de Janeiro: uma caracterização físico-ambiental. 1st edition. Rio de Janeiro: Editora da Fundação de Estudos do Mar.Google Scholar
Oliveira, M.A., Di Beneditto, A.P.M. and Rabelo, L.R. (2009) Variação geográfica na forma e nas relações alométricas dos otólitos sagitta da maria-luiza Paralonchurus brasiliensis (Steindachner, 1875) (Teleostei, Sciaenidae) no litoral norte do Rio de Janeiro (21°S–23°S), Brasil. Boletim do Instituto de Pesca 35, 475485.Google Scholar
Paramo, J. and Saint-Paul, U. (2010) Morphological differentiation of southern pink shrimp Farfantepenaeus notialis in Colombian Caribbean Sea. Aquatic Living Resources 23, 95101.Google Scholar
Peres-Neto, P.R. and Magnan, P. (2004) The influencing in swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species. Oecologia 140, 3645.Google Scholar
R Development Core Team (2011) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from: http://www.R-project.org (accessed 10 February 2012).Google Scholar
Riedlecker, E.I., Ashton, G.V. and Ruiz, G.M. (2009) Geometric morphometric analysis discriminates native and non-native species of Caprellidae in western North America. Journal of the Marine Biological Association of the United Kingdom 89, 535542.Google Scholar
Rohlf, F.J. (1998) On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47, 147158.Google Scholar
Rohlf, F.J. (2006) TPSdig version 1.17. Stony Brook, New York: Department of Ecology and Evolution, State University of New York. Available at: http://life.bio.sunysb.edu/morph/index (accessed 10 February 2012).Google Scholar
Rohlf, F.J. and Slice, D.E. (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39, 4059.Google Scholar
Rufino, M.M., Abello, P. and Yule, A.B. (2006) Geographic and gender shape differences in the carapace of Liocarcinus depurator (Brachyura: Portunidae) using geometric morphometrics and the influence of a digitizing method. Journal of Zoology 269, 458465.Google Scholar
Semensato, X.E.G. and Di Beneditto, A.P.M. (2008) Population dynamic and reproduction of Artemesia longinaris (Decapoda: Penaeidae) in Rio de Janeiro State, south-eastern Brazil. Boletim do Instituto de Pesca 34, 8998.Google Scholar
Sheets, H.D., Covino, K.M., Panasiewicz, J.M. and Morris, S.R. (2006) Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology 3, 315.Google Scholar
Silva, I.C., Mesquita, N. and Paula, J. (2010) Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura: Sesarmidae) along an East African latitudinal gradient. Biological Journal of the Linnaean Society 99, 2846.CrossRefGoogle Scholar
Tsarev, I.L., Volkova, P.A. and Glagolev, S.M. (2011) Investigation of morphological variability of Daphnia longispina (Cladocera, Crustacea) on Asafii island (Kandalaksha Gulf, the White Sea) using methods of classical and geometric morphometry. Zoologichesky Zhurnal 90, 109114.Google Scholar
Tzeng, T.D. (2004) Stock identification of sword prawn Parapenaeopsis hardwickii in the East China Sea and Taiwan Strait inferred by morphometrics variation. Fishery Science 70, 758764.Google Scholar
Vasconcellos, A.V., Viana, P., Paiva, P.C., Schama, R. and Solé-Cava, A. (2008) Genetic and morphometric differences between yellowtail snapper (Ocyurus chrysurus, Lutjanidae) populations of the tropical West Atlantic. Genetic and Molecular Biology 31, 308316.Google Scholar
Voloch, C.M. and Solé-Cava, A. (2005) Genetic structure of sea-bob shrimp (Xiphopenaeus kroyeri Heller, 1862; Decapoda, Penaeidae) along the Brazilian southeastern coast. Genetic and Molecular Biology 28, 254257.Google Scholar
Waldman, J.R., Grossfield, J. and Wrigin, I. (1988) Review of stock discrimination techniques for striped bass. North American Journal of Fisheries Management 8, 410425.Google Scholar